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Preface

This three-part document constitutes the Project Mission Report on Surveyor V,
the fifth in a series of unmanned lunar soft-landing missions.

Part I of this Technical Report consists of a technical description and an evalua-

tion of engineering results of the systems used in the Surveyor V mission. Part II

presents the scientific data derived from the mission, and the scientific analyses
conducted by the Surveyor Scientific Evaluation Advisory Team, the Surveyor
Investigator Teams, and the associated Working Groups. Part III consists of selected

pictures from Surveyor V and appropriate explanatory material.

Results given in this report are based on data evaluation prior to October 26, 1967.

It is expected that future evaluation and analysis of the Surveyor V data will provide
additional scientific results.
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I. Introduction

L. D. Jaffe and R. H. $teinbacher

Surveyor V was launched from Cape Kennedy, Florida,
at 07:57:01 GMT on September 8,1967. An Atlas/Centaur

launch vehicle placed the Surveyor into a parking orbit
and, at 08:16:27 GMT, injected it into a trajectory inter-

secting the moon. The spacecraft mass at injection was

1006 kg; after final touchdown, 303 kg.

On September 8 and 9, several midcourse maneuvers
were performed. The spacecraft landed in the southwest

portion of Mare Tranquillitatis at 00:46:44.28 GMT on
September 11, 1967. Based on inflight radio tracking
data, the preliminary position was determined to be
23.19°E latitude, 1.50°N longitude; the preliminary posi-

tion based on post-landing tracking data, to October 25,
is 23.18°E latitude, 1.41°N longitude, with a local radius
of 1736.9 km. 1

The spacecraft landed with a vertical velocity of about
4.2 m/sec and a horizontal velocity less than 0.5 m/see

on the southern slope of a crater about 9 × 12 m in hori-
zontal extent and up to 1.3 m deep. One leg touched just
outside the crater; the other two legs touched lower down

_R.W. Graves, unpublished work.

and within the crater about 0.2 sec later. Surveyor then
slid a short distance downslope, causing the footpads

visible to the television camera to dig trenches in the
lunar soil; one of these trenches is about 1 m long and

3 to 10 cm deep. The Surveyor came to rest at an angle
of about 19.5 deg from the local vertical.

The Surveyor V confguration (Fig. I-l) is generally
similar to that of Surveyor I (Refs. I-1 and I-2), but

Surveyor V carries an alpha-particle backscattering in-

strument to analyze the chemical composition of the lunar
surface. This instrument irradiates the lunar surface with

alpha particles from curium-242 sources and measures
the spectra of alpha particles scattered back. It also pro-

vides spectral data on protons produced by (a, p) reac-
tions with the atoms of the lunar surface. These spectra

are interpretable in terms of the kind and quantity of

elements present in the surface. Physically, the instru-
ment consists of a sensor head, a cube about 15 cm on

a side, which is lowered to the surface by a nylon cord

some time after the landing; and an alpha-scattering elec-

tronics compartment, located on the spaceframe. The
instrument has been fully described by Turkevich, et al.

(Refs. I-3 and 1-4).
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Fig. I-1. Model of Surveyor V spacecraft in landed configuration.
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In addition, a bar magnet and a nonmagnetic control
bar were attached to one of the footpads to indicate the

presence of lunar material with a high magnetic suscepti-
bility. Two convex auxiliary mirrors, located low on the
spaceframe, permitted better viewing of the lunar sur-

face below the alpha-scattering instrument, a vernier

engine, and a crushable landing block.

Surveyor V accumulated 104 hr of alpha-scattering
data and took 19,054 television pictures from touchdown

September 11 to sunset on the second lunar day, October
23, 1967. Of these pictures, 18,006 were taken between

September 11 and shortly after first sunset on Septem-
ber 24. They included views of the interior of the crater

in which the spacecraft landed and the rather level mare
surface surrounding the crater, star and planet sightings
for attitude reference, as well as a sequence of solar

corona pictures and earthshine pictures after local sunset

on the spacecraft. The alpha-scattering instrument accu-
mulated about 82 hr of data the first lunar day, giving the
first direct information on the chemical composition of

the moon. Views of the magnet assembly after touch-

down, before and after the vernier engine firing, also pro-

vided good data. To provide information on the effects
of engine exhaust upon the lunar surface material, the

liquid-propellant vernier rocket engines were fired for
0.55 sec at 05:38 GMT on September 13. Measurements
were made of the local radar reflectivity during the space-

craft landing maneuver, of mechanical properties of the
lunar surface material from the interaction of the space-

craft with the surface at touchdown and during the ver-

nier engine firing test, and of the radial velocity of the

landing site relative to earth as a function of time by

post-landing communication doppler shift. Surface tem-
perature data were obtained during the first lunar day
and after sunset until September 29.

Spacecraft transmission was resumed for a second lunar

day on October 15. An additional 1048 television pictures
and 22 hr of alpha-scattering data accumulation were
obtained up to the next sunset on October 23. Surface

temperature measurements were made during the second
lunar day, including the period of total eclipse of the sun

by the earth on October 18, and into the second lunar

night which began on October 24.

Section II of this document, prepared by the Surveyor V

Scientific Evaluation Advisory Team, summarizes the

principal science results of the Surveyor V mission as of
October 26. More detailed information may be found in

the subsequent sections, which were prepared by the

Surveyor V Investigators and Working Groups. These sec-
tions have been written independently of one another;

some differences in interpretation may exist among them.

Individual pictures taken by Surveyor are best identi-

fied by the day of the year and GMT at which they were
taken. September 11, 1967, was Day 254; October 23 was

Day 296. Mosaics are best identified by catalog numbers.

References

I-1. Surveyor Scientific Evaluation Advisory Team, "'Surveyor I: Preliminary
Results," Science, Vol. 152, p. 1737, 1966.

1-2. Jaffe, L. D., "Lunar Surface Exploration by Surveyor Spacecraft: Introduc-

tion/' 1. Geophys. Res., Volo 72, p. 773, 1967.

I-3. Turkevich, A° L., Knolle, K., Emmert, R. A., Anderson, W. a , Patterson, ]. H.,

and Franzgrote, E., "Instrument for Lunar Surface Chemical Analysis," Rev.

Sci. Instruments, Vol. 37, p. 1681, 1966.

1-4. Turkevich, A. L., Knolle, K., Franzgrote, E., and Patterson, J. H., "Chemical

Analysis Experiment for the Surveyor Lunar Mission," 1. Geophys. Res.,

Vol. 72, p. 831, 1967.
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II. Principal Science Results From Surveyor V

L. Do Jaffe, S. A. Batterson, W. E. Brown, Jr., E. M. Christensen, S. E. Dwornik,

Do Eo Gault, J. W. Lucas, R. H. Norton, R. F. Scott,

E. M. Shoemaker, G. H. Sutton, and A. L. Turkevich

The area of southwestern Mare Tranquillitatis in which

Surveyor V landed appears generally similar to the sites
in Oceanus Procellarum observed by Surveyors I and III.

All three areas are fairly level, dark maria with rather
similar distributions of craters and rocks. A surface layer

of weakly cohesive fine particles, aggregates, and rocks
is present in both Mare Tranquillitatis and Oceanus
Procellarum. Differences between the surface layers in

these maria are relatively small.

Surveyor V was the first lunar soft-landing spacecraft
to obtain information about the chemical nature of the

lunar surface. This was achieved through two experi-
ments: one obtained the gross chemical composition by

an alpha-particle backscattering instrument, and the other

obtained some magnetic characteristics of the surface

material with a bar magnet.

The three most abundant elements found by Surveyor V

at the mare landing site are the same as the most prevalent
on the surface of the earth: in decreasing abundance, they

are oxygen, silicon_ and aluminum. The relative amounts
of the chemical elements are similar to those of a silicate

rock of a basaltic type.

Lunar surface material of high magnetic susceptibility

adhered to the magnet. The quantity of magnetic material
observed on the magnet is comparable to that expected if

the magnet came in contact with pulverized basalt with
10 to 12_ magnetite and not more than 1_ admixed metal-
lic iron. Particle size of material attracted by the magnet
was less than i mm°

Surveyor V landed in a dimple-shaped, 9- X 12-m rim-.
less crater, which is the largest member of a small chain

of rimless craters; a parallel row of very small craters also
occurs within the large crater. The long axis of the large

crater and the crater chain are approximately parallel with
the dominant linear features in the highlands west of Mare

Tranquillitatis and with many other elongate craters and
crater pairs in nearby parts of the mare. On the basis of

its shape and the alignment of small associated craters, the
crater in which Surveyor V landed may have been formed

by drainage of surficial fragmental debris into a northwest-
trending fissure.

Observations of blocky-rimmed craters, relatively
nearby, indicate that the local thickness of the layer of

fragmental debris with low cohesion is not more than 5 m.
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The wails of the Surveyor V crater provide exposures of

the upper meter of this debris layer. Different types of
fragments are revealed in the pictures of the debris dis-

lodged from these walls during the spacecraft landing and
in the pictures of the undisturbed parts of the walls. The

types of fragments include: (1) bright, angular objects,
which are inferred to be pieces of dense rocky material;

(2) dark, rounded objects, which are probably aggregates
of very fine-grained particles; and (3) dark, lumpy objects,

which appear to be aggregates of aggregates. The aggre-
gate character of some of the loose, ejected fragments is

well demonstrated by the presence of bright, angular chips
set in a dark, fine-grained matrix. At depths greater than

about 10 cm, most of the debris layer appears to be com-
posed of slightly shock-compressed aggregates, ranging
from a few millimeters up to 3 cm in diameter, set in a

matrix of less-coherent, finer particles. Rocky chips and
fragments larger than a millimeter are dispersed as a sub-
ordinate constituent of the debris.

The estimated normal albedo (normal luminance fac-

tor) of the undisturbed parts of the lunar surface near
Surveyor V is 7.9 ___1.05, somewhat lower than that ob-

served at the Surveyor 111 landing site. Debris ejected on
the lunar surface in front of the footpads has a normal

albedo of 7.5-4-1.0, which is only about one-twentieth
lower than the albedo of the undisturbed surface, but is

similar to the albedo of the material disturbed by the

footpads at the Surveyor HI landing site.

New photometric evidence obtained from the

Surveyor V pictures shows that the bright, angular frag-
ments are denser or at least less porous than the dark,

fine-grained surficial material and dark aggregates. The

surfaces of the bright, angular fragments have a photo-
metric function more like that of a lambertian scatterer

than like that of the fine-grained lunar material.

A spacecraft vernier engine firing against the lunar

surface produced observable erosion resulting from two
mechanisms: the removal of particles by exhaust gases

blowing along the surface, and explosive blowout of en-
trapped gas and soil from directly beneath the nozzle

immediately following engine shutdown. Analyses of the
surface disturbance indicate a material permeability of
between 1 X 10 -s cm 2 and 7 X 10-s cm-", which is compar-

able to the permeability of terrestrial silts.

As in Surveyors I and HI, the landing produced inter-

actions with the surface. Various analyses of phenomena
associated with the landing and with the firing of the

vernier rocket engines have provided these additional esti-
mates of surface properties:

Static bearing strength:

For upper few millimeters: < 104 dynes/cm _.

Averaged over upper few centimeters:

_3 X 105 dynes/cm 2.

Angle of internal friction: consistent with Surveyor III

results (37 deg).

Pressure developed by the soil against the footpad in

resisting the slide during landing was about 7 X 10'
dynes/cm 2, which agrees with results obtained from

the Soil Mechanics Surface Sampler Experiment on
Surveyor HI. The estimate of permeability indicates that

most of the particles are in the 2- to 60-/_ size range; this
value agrees with results from photographic observations
of the disturbed areas, the match of Surveyor V footpad

trenches to those produced experimentally in pulverized
basalts, and analyses of Surveyor III footpad imprints.

Clods observed in the disturbed areas appear to be simi-
lar to those observed in previous missions, indicating a

similar cohesion. In general, the soil at this site appears
similar, but somewhat weaker than at the other Surveyor

landing sites.

The lunar day temperatures derived from Surveyor V

observations are in fair agreement with predictions based
on telescopie observations. The temperatures of the lunar

surface after sunset and during total eclipse suggest that
the surface material has an effective thermal inertia of

approximately 500 (cgs units), in good agreement with

Surveyor HI eclipse data. This differs from a value of
approximately 1000 obtained from data derived on earth.

The evidence that the lunar surface material at the

Surveyor V landing site is basaltic in composition, and the

fact that this Surveyor V site appears to be typical of
the mare areas, suggests that differentiation has occurred

in the moon, probably owing to internal sources of heat.
The results are consistent with the hypothesis that the
mare basins are filled with extensive basaltic volcanic

flows. If such flows have occurred, some of the processes
and products of lunar magmatic activity are apparently
similar to those of the earth.

Surveyor V provided the first measurements of the
brightness of the solar corona at distances of 10 to 30 solar

radii from the center of the sun. Since the brightness is
produced by scattering from particulate matter between

the earth and the sun, it should prove possible to derive
density measurements of particulate matter at distances
out to one-third the radius of Mercury's orbit. A good

determination of the density distribution with height
above the ecliptic plane may be made.
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III. Television Observations From Surveyor V

E° M. Shoemaker, R. M. Batson, H. E. Holt, E. C. Morris,

J. J. Rennilson, and E. A. Whitaker

Surveyor V landed on the lunar surface at 00:46:44
GMT on Day 254 (September 11), 35 hr after local sun-
rise on the moon. Between the time of landing and lunar

sunset, 13 days later, it transmitted more than 18,000

high-quality television pictures of the lunar surface and
parts of the spacecraft. The Surveyor V camera was oper-
ated extensively from the Goldstone, California, and

Canberra, Australia, Tracking Stations of the Deep Space
Network; some pictures were also received at the Madrid,

Spain, Tracking Station.

The Surveyor V television camera is similar to the
cameras flown on Surveyors I and II1 (Ref. III-1). The

Surveyor V camera, however, is more sensitive than
the Surveyor III camera. The total range of response
of the Surveyor V camera, like that of the Surveyor I
and IH cameras, is about 1,000,000 to 1, which is achieved

by the combined use of various filters, apertures, and

exposure times. Three color filters (red, green, and blue),
carefully matched to the spectral response of the camera,

were carried on Surveyor V. The match of the camera-
filter spectral response function to the standard CIE color-

matching functions was as good as was achieved on the
Surveyor III camera.

After landing, the mirror and optical parts of the

Surveyor V camera were clean and free of dust and dirt
particles. This resulted in the h_ghest-quality Surveyor

pictures yet received.

A. Landing Site

The landing site of the spacecraft, as determined from
inflight tracking data, is at 1.50°N latitude and 23.19°F

longitude. On the basis of post-landing tracking data, the
landing site is at 1.41ON latitude and 23.18OE longitude.
The 3_ uncertainty ellipse for the first solution has a semi-

major axis of 6.9 km and a semi-minor axis of 2.7 km
(Fig. III-1). This site is in the southwestern part of Mare

Tranquillitatis, about 70 km north of the southern bound-
ary of the mare and a little over 80 km east of the crater

Sabine (Fig. III-2). It is near the periphery of a complex
system of mare ridges, but no known mare ridges occur

within 19 km of the most probable position of the landing
site. The region is crossed by faint rays associated with

the major crater Theophilus, 350 km to the south, and the
landing site may be within one of the Theophilus rays.

The highlands to the west of Mare Tranquillitatis are
characterized by prominent ridges trending northwest

JPL TECHNIC.AL REPORT 32-1246 7



Fig. II1-1. Lunar Orbiter V medium-resolution photograph (M-74) of an area in the southern part of Mare Tranquilli-

tatis. Cross shows solution from inflight tracking data for the location of Surveyor V, and ellipse shows 3_ limit of

error of this location• Large crater on the right side of the photograph is Sabine D. The crater in which Surveyor V
landed is too small to be resolved in this photograph.

(Fig. III-2); these ridges are part of the system of Imbrian
sculpture (Refs. III-2 and III-3). Subordinate linear struc-
tures in the highlands, such as the Ariadaeus Rille, trend

about N70°W. High-resolution photographs of the im-

mediate vicinity of the landing site taken by Lunar
Orbiter V (H-78) reveal many craters about 10 m across
and smaller, which are aligned in a northwest direction.

Typically, these small craters occur in pairs, and the line
between their centers trends northwest; a few individual

craters are markedly elongate in this same direction. This
alignment follows the dominant trend on this part of the

mare of the lunar patterned ground, which consists of

gentle ridges and troughs of very low amplitude. Both

the aligned craters and the lunar patterned ground prob-
ably reflect a subsurface system of fissures and joints
related to the Imbrian sculpture.

An unsuccessful attempt was made to locate the
Surveyor V landing site on Lunar Orbiter V high-

resolution frame H-78. The coordinates of the landing
site obtained from the tracking data were plotted on
ACIC Lunar Chart AIC 600 and transferred to the Lunar

Orbiter photograph; the resolution of this photograph is

about 2.5 m. The chances were remote of identifying the

8 JPL TECHNICAL REPORT 32-1246



Fig. 111-2. Earth-based telescopic photograph of Mare Tranquillitatis and the highlands to the west. Prominent
northwest-trending ridges and valleys in the highlands are part of lmbrian sculpture.

Surveyor V crater by its size and shape alone. It is hoped
that the study of the distant features shown in narrow-

angle photographs of the horizon, taken nea r sunset, will
lead ultimately to the identification of the crater in which

Surveyor V landed.

Bo Landing Site Topography

Data obtained from the television pictures have been

used to prepare preliminary topographic maps of small

areas on the lunar surface surrounding Surveyor V. The

positions of points on the lunar surface, relative to the tele-
vision camera, were obtained from angular position meas-
urements derived from potentiometers on the elevation
and azimuth axes of the camera mirror, and from range
measurements based on the solution for points of best

focus in pictures taken at many different focus settings.
This method of topographic mapping is essentially new;

we refer to the technique as focus ranging. The tech-
nique utilizes pictures taken at eight to ten different focus

JPL TECHNICAL REPORT 32-1246 9



settings at each camera elevation position along a given

azimuth. Small areas in best focus in each picture are
located on a mosaic of pictures taken at specific focus
settings; the azimuth and elevation of the centers of each

small area in best focus are determined by graphical mea-

surement. The location of a point on the lunar surface
with respect to the intersection of the camera-mirror rota-
tion axes is computed from azimuth, elevation, and cali-

brated focus distance. Focus-ranging surveys of the
Surveyor V landing site were taken at each available

camera elevation position along camera azimuth lines
18 deg apart. The elevation angles are separated by

4.96-deg increments. Partial focus-ranging surveys also
were taken along several intermediate azimuths.

More than 4000 focus-ranging pictures were taken dur-
ing the first lunar day, from which more than 500 control

points were computed for compilation of the preliminary
topographic maps (Figs. III-3 and III-4). These maps

show that the Surveyor V spacecraft is located on the
southwest wall of a crater, 9 m wide, about 12 m long,
and more than a meter deep. Footpads 2 and 3 of the

spacecraft came to rest near the foot of the crater wall,
and footpad 1 rests near the rim of the crater. For con-
venienee of reference, we will call this crater the

Surveyor V crater.

The orientation of the spacecraft and of the camera has
been determined from television camera observations of

stars and planets and of the lunar horizon, and also from

the angular settings of the solar panel sun sensor and posi-
tional tuning of the spacecraft's planar array antenna. The
stars Sirius, Arcturus, Agena, and Capella and the planets

Venus and Jupiter were observed. Preliminary reduction
of these observations showed that the spacecraft was

tilted 19.7 deg at an azimuth of N17°E. Observations of
the lunar horizon, on the other hand, indicate that the

spacecraft was tilted 19.4 deg at an azimuth of N13°E.
The amount of tilt of the spacecraft, at the time of these

observations, is known within a few tenths of a degree,
but the present solution for the azimuth of tilt has a prob-

able error of several degrees. The camera 0-deg azimuth
was found from the stellar and planetary observations to

be oriented approximately N24.7°E; this solution is accu-
rate to within a degree. Near the end of the first lunar
day, the shock absorbers on legs 2 and 3 compressed, and

the spacecraft was tilted about 3 deg more to the north-
east. The final attitude of the spacecraft and camera at

the end of the first lunar day is not accurately known.

Because the camera is inclined toward the floor and far

wall of the Surveyor V crater, more than 80_ of the field of

view below the horizon is occupied by parts of the lunar
surface that are not more than 6 m from the camera. The

rim or edge of the crater, as seen from the camera, lies

about 8 to 19 deg below the horizon and follows a sinus-
oidal curve approximately parallel with the horizon in the

panoramic mosaics prepared from the pictures (Fig. III-5).
Under high sun illumination, the edge of the crater can be

observed as a region of abrupt change in the apparent
eccentricity of very small craters, which reflects the

change in surface slope. A rather abrupt change in the
observable texture of the surface and in average photo-

graphic density or tone also occurs at the edge of the
crater (Fig. III-6). At very low angles of solar illumina-
tion, the edge of the crater is easily distinguished as the

upper edge of the shadow filling the crater.

As revealed by Figs. III-3 and III-4, the Surveyor V

crater is elongate in the northwest direction. It is, in fact,
the largest local member of a chain of small craters trend-
ing northwest, and it appears to be a compound crater

consisting of two partially merged, smaller craters or
components separated by a subdued northeast-trending

septum or low ridge. Thus, the Surveyor V crater ap-
pears to be a member of the family of elongated craters

and crater pairs observed on the Lunar Orbiter V high-
resolution photographs in the vicinity of the Surveyor V

landing site.

The floor of the southeast component of the Surveyor V
crater is about 20 cm higher than that of the northwest

component, but the rim of the compound crater is also
20 to 30 cm higher on the southeast than on the north-
west. The camera elevation axis rises almost 80 cm above

the north rim of the crater, but only about 30 cm above
the south rim.

Beyond the rim of the Surveyor V crater, the lunar sur-
face is visible out to distances of about a kilometer to

the north and west. The horizon to the east and south is

closer. In one sector south of the spacecraft, the horizon

is only about 100 m distant, where it is occupied by the
raised rim of a nearby crater. The horizon lies slightly

above the horizontal line of sight in all directions, and
is 0.4 deg high on the average. These data suggest the

landing site is within, and on the southeast flank of, a very
broad, shallow depression on the order of 1 km in width

and about 10 m or a few tens of meters deep.
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Fig. 111-3. Large-scale topographic map of Surveyor V

landing site (topography by R. M. Batson, R. Jordan, and

K. B. Larson).
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Fig° 111-5. Mosaic of wide-angle pictures from Surveyor V taken the day before lunar sunset° The horizon follows a

sinusoidal curve because the camera is tilted° The shadow of the west wall of the Surveyor V crater partially fills the

crater at the left. Rounded edge of the crater follows the horizon, but lies approximately one-half the width of one

wide-angle picture below it (Day 266, 11:20:24 to 11:47:54 GMT).



Fig.111-6.Mosaicof narrow-anglepicturesfromSurveyor V showing the northwest wall of the Surveyor V crater,

and the far field beyond the rim of the crater extending to the horizon. Differences in texture of the crater wall

and the far field are due to differences in the distance from the camera and inclination of the surfaces (Day 275,
15:12:50 to 16:11:20 GMT).

C. Morphology and Distribution of Craters

In profile (Fig. III-7), the Surveyor V crater is dimple-

shaped; it lacks a raised rim, and the slope of the crater

wall increases gradually toward the center of the crater.

It has a distinct, small, concave floor, however, about 2.4 m

wide. Both in plan view and in profile, the Surveyor V

crater resembles other craters, observed in Ranger pic-

tures and Lunar Orbiter photographs, which are inferred

to have been formed by drainage of surficial debris into

subsurface fissures (Refs. III-4 to 111-6). We infer that

the Surveyor V crater has been formed by drainage of

surficial fragmental debris into a fissure that passes be-

neath the center of the crater and extends for some dis-

tance both northwest and southwest beneath the crater

chain.
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Along the northwest wall of the Surveyor V crater is a

chain of small craters ranging in diameter from 20 to

40 cm (Figs. 111-3 and III-8). The trend of this chain is

nearly parallel with the long axis of the Surveyor V crater.

This group of small craters probably has been formed

by recent renewed drainage into the underlying fissure

or into a parallel fissure. Other small craters are scattered

over the walls and floor of the Surveyor V crater; many

have low raised rims. Most of these craters probably were

formed by impact.

The lunar surface beyond the rim of the Surveyor V

crater is pockmarked with hundreds of craters visible

from the vantage point of the Surveyor V camera. They

range in diameter from a few tens of centimeters to more

than 20 m. About 10 m northwest of the Surveyor V

camera is another rimless crater about 4 m in diameter

(Fig. III-9). This crater has probably been formed by

drainage of debris into a subsurface fissure, like the

Surveyor V crater, and is probably localized over the

same fissure or a parallel one. Many other craters observ-

able in the middle distance are of similar rimless form and

may have been formed by drainage of surficial debris.

The size-frequency distribution of small craters rang-

ing from 6 cm to 2 m in diameter, which occur within

Fig. 111-8. Wide-angle picture of the northwest wall of the Surveyor V crater. Chain of small craters 20 to 40 cm

in diameter extends from the center to the bottom of the picture |Day 266, 11:26:28 GMT).
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Fig. 111-9. Wide-angle picture of the far field and horizon northwest of Surveyor V. The dark area

along the bottom of the picture is part of the wall of"the Surveyor V crater in shadow. A crater 4 m in
diameter lies between the rim of the Surveyor V crater and the horizon. This crater, which is devoid

of a raised rim, probably is part of a system of craters aligned in a northwest direction and parallel
with one of the major lineation directions in Mare Tranquillitatis (Day 266, 11:27:18 GMT).

the Surveyor V crater and in the near field out to 10 m
from the spacecraft (Fig. III-10), was determined from

Surveyor V pictures taken early in the lunar day and just
before sunset. In addition, the size-freqtmncy distribution

of craters ranging from 4 to 256 m in diameter was deter-
mined from Lunar Orbiter V photograph H-78 for an area

of 1-km radius within the 3_ Surveyor V landing ellipse.
There were 107 craters measured from the Surveyor V pic-
tures; 1196 craters were measured fom the Lunar Orbiter

photographs.

A comparison of the cumulative size-frequency distri-
bution of small craters measured from the Surveyor V

pictures with size-frequency distribution of craters deter-
mined for the Surveyor I and IH sites (Fig. III-11) shows
fewer small craters at the Surveyor V site. This observa-

tional difference is due primarily to the incompleteness of

the observational data for the Surveyor V site. The low

oblique view (from the television camera) of the lunar
surface outside the Surveyor V crater and unfavorable

illumination of parts of the Surveyor V crater during the

lunar day made recognition of the small craters difficult.
The cumulative frequency of craters in the 4- to 256-m-
diameter range, determined from the Lunar Orbiter V

photograph, is somewhat below the average for the lunar
plains. This observed low frequency near the Surveyor V

site is due, in part, to incompleteness of the data near the
4-m end of the diameter range measured; but the number
of craters from about 50 to 250 m in diameter is actually

somewhat below average in the area examined. The over-

all cumulative size-frequency distribution of craters at the
Surveyor V landing site probably approaches the general

frequency distribution for craters on the mare surfaces
determined from Ranger VII, VIII, and IX pictures

(Fig. III-11).
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Fig. II1-10. Location of areas used in determination of size-frequency distribution of craters (area V-l) and frag-

ments (areas V-A to V-H) at the Surveyor V landing site. Rim of the Surveyor V crater is indicated by broken line;

stippled pattern indicates area V-I used in the determination of size-frequency distribution of craters.
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at the Surveyor V landing site compared with the size-
frequency distribution of craters estimated for the

Surveyor I and III landing sites, and the mean size-
frequency distribution of small craters on the lunar plains

determined from Ranger VII, VIII, and IX pictures.

Do Thickness of Lunar Regolith

A tew craters in the middle distance have distinct,

raised blocky rims. One crater, about 200 m to the north

of the spacecraft (Fig. III-12), is about 15 m in diameter;
another crater, about 100 m to the south (Fig. III-13), is

about 20 .m in diameter. A strewn field of blocks sur-
rounds each of these craters; the strewn field associated

with the crater to the south extends almost to the space°

craft. If the blocky-rimmed craters have depth-to-diameter
ratios between 1:3 and 1:4, ratios characteristic of small

primary lunar craters, the presence of blocks on their rims
indicates that the depth to coarse blocky or coherent

material is locally not greater than about 5 m. The

scarcity of blocky ejecta around most small craters, how-
ever, indicates that at least the upper few meters of mate-
rial consist predominantly of fine-grained debris with

little or no cohesion (Refs. III-6 to III-8).

E. Surficial Debris

An unusually detailed view of the surficial debris layer
or lunar regolith is provided by the closeup pictures of

the walls and floor of the Surveyor V crater. The space-
craft initially touched down on the upper part of the south

wall of the crater; footpad i touched first outside of the
crater, and footpads 2 and 3 part way down the crater

wall. As the spacecraft rebounded, it slid down the crater
wall and came to rest with footpads 2 and 3 close to the

edge of the concave crater floor. A 1-m-long trench dug
by footpad 2 in sliding downward is shown in Fig. III-14.

It is about 10 cm deep at the upper end and partly filled

with loose debris. A good exposure of the fragmental
material that •lines the Surveyor V crater wall can be seen

for about 60 cm along the wall of this trench.

Loose debris was ejected in front Of each footpad as

the spacecraft slid down the crater wall; this debris
formed distinct low piles that extended onto• the crater
floor in front of footpads 2 and 3 (Fig. III-3). In addition,
a considerable amount of loose material cascaded down

the slope ahead of footpad i and is visible on the floor of
the crater directly beneath the camera.

Many individual fragments rolled a short distance, leav-

ing tracks on the original surface (Fig. III-15). Some of
these tracks, which are a millimeter to a few millimeters

deep, were formed by fragments no more than 2 cm across.
On the assumption that the density of the fragments does

not exceed 3 g/cm '_,the development of the tracks shows
that the bearing strength of the uppermost few milli-

meters of the fine-grained debris on the lunar surface is
less than 104 dynes/cm 2, for surface areas of about 1 cm 2.

This fragile, uppermost layer was disturbed not only by
fragments set in motion during landing of the spacecraft,

but also by the scouring effect of the gases exhausted
from the vernier engines, when they were turned on
to conduct an erosion experiment. At distances more

than a meter from the vernier engines, the surface has a
marked swept appearance with many low parallel grooves

JPL TECHNICAL REPORT 32-1246 19



Fig. 111-12. Narrow-angle picture showing blocky-rim crater about 15 m in diameter, approximately 200 m north

of Surveyor V (Day 265, 15:30:48 GMT|.

Fig. 111-13. Mosaic of narrow-angle pictures from Surveyor V taken on the second day before lunar sunset• The

low rim of a nearby crater 20 m in diameter forms a slight bump on the horizon• A strewn field of blocky

debris adjacent to the crater lies in the far field just below the horizon. Rim of the Surveyor V crater lies midway

between the horizon and bottom of the mosaic. Dark object at right is part of the spacecraft |Day 265, 11:16:31

to 11:21:44 GMT).
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Fig. 111-14. Mosaic of two wide-angle pictures showing footpad 2 and the trench it dug when the spacecraft slid
down the inner slope of the crater. The trench is about 1 m long and 3 to 10 cm deep (Day 258, 03:24:59 and
03:40:28 GMT).

Fig+ 111-15. Wide-angle p'..Jre of the lunar surface just
below the television camera showing tracks made by

lunar fragments set in motion downslope during landing
of the spacecraft on the moon. White bar and dark area

at the bottom of the picture are parts of the camera (Day
254, 23:52:53 GMT).

(Fig. III-16). These grooves probably were formed pri-

marily by the sliding and rolling of loose fragments rang-
ing in size from a few millimeters to a few centimeters
across (Fig. III-17a and b). Many loose fragments ejected

during the landing of the spacecraft were moved again

during the firing of the vernier engines.

Many types of fragments are revealed in the pictures
of the debris dislodged by the spacecraft and also in pic-
tures of the undisturbed surface. In the debris in front

of footpad 2 (Fig. III-18) are: (1) bright, angular frag-
ments, which are inferred to be pieces of dense rocky

material; (2) dark, rounded objects, which are probably
aggregates of very fine-grained particles; and (3) dark,

lumpy objects, which appear to be aggregates of aggre-

gates. The aggregate character of some of the loose,
ejected fragments is well demonstrated by the presence

of bright, angular chips set in a dark, fine-grained matrix
(Fig. III-19a and b). The surface texture of one fragment
several centimeters across, originally lying on the south-

east wall of the crater (Fig. III-19c), suggests that it too
is composed in part of resolvable pieces and chips, each
a few millimeters across. Its surface is marked by numerous

small, angular protuberances and indentations. Similar,

but slightly more rounded, protuberances 1 to 3 mm across
were observed on a dark, rounded object exposed in the

wall of the trench dug by footpad 2 (Fig. III-19d).
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Fig. 111-16. Area V-C: a small area on the floor of the Surveyor V crater strewn with fragments scattered by

the spacecraft as it landed. Part of the surface has a swept appearance produced by the rolling and slid-

ing of particles set in motion by the exhaust from one of the vernier engines. Smallest fragments resolved

are about 1 mm across, and the largest fragments are about 3 cm across (Day 264, 12:22:43).
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Fig. 111-17o A small area on the lunar surface about 2 m from the spacecraft, in which loose fragments moved during the firing of the vernier

engines. (a) Picture taken approximately 24 hr before firing of the vernier engines. A fragment approximately 3 cm wide was disturbed by

Surveyor V during landing and rolled and bounced across the lunar surface, leaving a track which can be seen near the center of the picture

(Day 255, 06:07:26 GMT). (b) Picture of the same area approximately 24 hr after firing of the vernier engines. A comparison with (a) shows that,

while some of the larger fragments and lumps have not moved, most of the finer fragments have shifted positions (Day 257, 08:21 :i9 GMT).
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Fig. 111-18. Area V-A: an area used to determine size-frequency distribution of fragmental material

thrown onto the lunar surface in front of footpad 2 during landing. Most of the fragments are aggre-

gates of fine particles. The bright fragments probably are pieces of coherent rock. Some dark, lumpy

objects may be aggregates of aggregates. Smallest fragments resolved in this picture are about 1 mm

across, and the largest fragments are about 3 cm across (Day 258, 08:40:04 GMT).
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Fig. 111-19. Narrow-angle pictures showing vari_

ous types of aggregate fragments observed in the

Surveyor V crater. (a) Two fragments, each about

2 cm across, ejected during landing. Bright spot_

with angular outlines on these fragments are prob-

ably tiny, bright rock fragments embedded in a

very dark, fine-grained matrix (Day 264, 11:47:56

GMT)o (b) Fragments ejected from trench made by

footpad 2 during landing° Angular fragment at tol_

of picture, which is about 4 cm long, has bright and

light gray spots, which may represent rocky chips

and compacted aggregates of fine-grained parti-

cles. The whole fragment appears to be a complex

aggregate composed of rock chips and smaller

aggregates (Day 258, 01:41:27 GMT). (c) Fragment

10 cm across lying on southeast wall of Surveyor V

crater. Surface of fragment exhibits numerous small,

angular protuberances and indentations, which

suggests it is a conglomerate or breccia composed

of resolvable pieces and chips (Day 258, 08:33:13

GMT)o (d) Wall of trench dug by footpad 2 during

lunar landing. Largest, dark rounded object to left

has rounded protuberances 1 to 3 mm across, each

of which may be an aggregate of fine .particles. The

entire object appears to be an aggregate of smaller

aggregates (Day 258, 08:39:28 GMT).
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Material exposed in this trench is closely similar to the

rubble or debris exposed in many of the small craters

(a few tens of centimeters across) that dot the walls and

floor of the Surveyor V crater (Fig. III-20). Most of the

debris appears to consist of clods or aggregates of fine

particles; however, some appear to be complex aggregates

or individual, bright, angular pieces of rocky material.

New photometric evidence obtained from the Surveyor V

pictures shows that the bright, angular fragments are

denser or at least less porous than the dark, fine-grained

surface material and dark aggregates. Figure III-21

illustrates a bright, angular fragment, about 12 cm across

and 2 m from the camera, under two different angles of

solar illumination. The shadow of one of the omnidirec-

tional antennas on the spacecraft passed over this frag-

ment during the lunar day, and we have referred to it

as the "omni rock." In Fig. III-21a, this object is seen as

it appeared in the late lunar morning at a small phase angle

(angle between the vector from the object to the camera,

and the vector from the object to the sun). At this phase

angle, most parts of the surface of the fragment are

slightly brighter than the surrounding fine-grained debris.

Some parts of the fragment, however, are covered with

material that has nearly the same brightness as the nearby

fine-grained debris. These covered parts of the fragment

are depressions that appear to be partly filled with dark,

very fine-grained material. In Fig. III-21b, the fragment

is shown as it appeared in the late lunar afternoon at a

large phase angle. Here the exposed surfaces of the

fragment are much brighter than the surrounding fine-

grained debris and much brighter than the fine-grained

material in the depressions on its surface. The difference

in contrast in the two pictures is due to differences in the

photometric function of the fine-grained debris and the

photometric function of the surface of the angular frag-

ment. Much more light is scattered from the surface of

the angular fragment at large phase angles than from the

dark, fine-grained material, whereas the luminance of the

angular fragment and the fine-grained debris is more

Fig. 111-20. Narrow-angle picture showing fragments in small crater on the north wall of the Surveyor V

crater. The small crater is lined with fragments similar to those exposed in the trench dug by footpad 2

during landing. Most of the fragments are aggregates of fine particles; complex aggregates and indi-
vidual, bright, rocky chips also appear to be present (Day 264, 12"12:24 GMT).
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Fig. 111-21° Two narrow-angle pictures showing an angu-

lar fragment 12 cm across lying 2 m from thetelevision

camera on the floor of the Surveyor V crater. (a) Picture

taken in late lunar morning. Exposed parts of fragment

are slightly brighter than surrounding surface debris.

Parts of the fragment covered with fine-grained debris

appear as slightly darker patches (Day 257, 02:47:27
GMT|. (b| Picture taken in late lunar afternoon. The exo

posed parts of the fragment are conspicuously brighter

than the surrounding fine-grained debris on the lunar

surface and also brighter than the small patches of

debris lying in depressions on the upper surface of the

fragment IDay 264, 04:22:25 GMT).
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Fig. 111-22. Angular block 11 cm in diameter on the east rim of the Surveyor V crater. The nearly level,

upper surface of this block is much brighter at large phase angles than the surrounding fine-grained

debris (Day 258, 08:44:16 GMT).

Fig. 111-23. Rounded, broken fragment lying in the trench dug by footpad 2. This fragment appears to

have rolled into the upper end of the trench soon after it was formed. It is conspicuously bright at large

phase angles compared with the surrounding dark clods and rubble (Day 258, 08:30:02 GMT).
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nearly equal at small phase angles. This indicates that
the surface of the fragment is more like a lambertian scat-

tering surface than is the dark, fine-grained surface mate-
rial. It is, therefore, less porous or less rough at a scale

below the resolution of the television pictures.

Many other bright, angular objects in the field of view
around Surveyor V show photometric properties similar

to that observed for the "omni rock." The top of an angular
block, about 11 cm across and 6 m from the camera, is

seen to be much brighter at large phase angles than the
nearly parallel surface of the fine-grained debris surround-

ing the block (Fig. III-22). A bright, rounded object,
which rolled into the head of the trench formed by foot-

pad 2 (Fig. III-23), was also conspicuously bright at large
phase angles compared with the surrounding dark clods

and rubble. This object may have been partly broken by
the impact of footpad 2 before rolling into the trench and,

ff so, some of the surfaces observed may have been freshly
formed. It may be inferred that all bright objects, which

exhibit a photometric function more like that of a lamber-
tian surface than like most other parts of the lunar sur-

face, are relatively dense, coherent material. Probably
they are either rocks or compacted aggregates of fine

particles whose mechanical properties are similar to
those of rocks. Some such compacted aggregates may

have been formed by shock compression during impact

eratering.

The blocks on the raised rims of some of the larger
craters in the middle distance are too numerous for all

of them to have been formed by shock compaction of

weakly coherent, fine-grained fragmental material. Impact
experiments in weakly coherent, target materials show

that the amount of rocky material produced by shock

compression is a small fraction of the total debris ejected
from the impact craters, and the rocky pieces so formed
are small compared with blocks ejected from craters of

comparable size formed in targets of coherent rock. _ It
is highly probable that the blocky fragments in the strewn
fields around the raised-rim craters north and south of

1H. J. Moore, personal communication, based on observations of
missile impact craters at the White Sands Missile Range, New
Mexico.

the spacecraft are derived from a rocky substratum that

underlies the surface debris layer.

Blocks in the strewn field south of the spacecraft are
close enough to be observed in some detail in the narrow-

angle, high-resolution Surveyor V pictures (Fig. III-24a
and b). They are angular to subrounded, and generally do
not exceed 25 to 50 cm in maximum observable dimen-

sion. At low phase angles, they appear slightly brighter

than the surrounding fine-grained debris on the lunar
surface (Fig. III-24b), and some of them are distinctly

mottled with irregular, bright spots 1 to 2 cm across. In
this respect, these fragments resemble a mottled angular-
to-subrounded block 50 cm across that was observed near

Surveyor I, over 1000 km to the west of the Surveyor V
landing site (Ref. III-1). This widespread distribution of

mottled rocks suggests they may be an important ligho-
logic component of the maria.

Surveyor V pictures show two fragments of unique
appearance that may once have been melted or partially
melted by shock. One fragment, on the wall of the

Surveyor V crater just above the trench formed by foot-
pad 2, is about 3 cm long and irregular to knobby in

shape. A picture of it taken in the late lunar morning

(Fig. III-25) suggests that its upper surface is partly specu-
lar. Various parts of the fragment are either much brighter

or much darker than the surrounding fine-grained debris.

The other fragment is about 1 cm long and was de-

posited on the floor of the Surveyor V crater during the
firing of the vernier engines. This fragment is exceedingly
ragged in outline and appears to be pierced by holes, as

indicated by gaps in the shadow it casts (Fig. III-26). It is
probably a natural object blown out of the crater wall by

the vernier engine exhaust, but there is _/possibility that

it is simply an artifact created by the interaction of the
rocket fuel or oxidizer or the exhaust with the lunar sur-

face material. Both this object and the partly specular
fragment may be comparable to shock-formed glasses and

impactites shown in Fig. III-27. Specular surfaces and
irregular shapes are common characteristics of impac-

rites, and we suggest that these two unusual lunar frag-
ments may be impacrites.
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Fig. 111-24. Fragments in a strewn field of blocks south of the spacecraft. (a) Subrounded fragments lying

18 to 30 m from Surveyor V television camera. Largest fragment, which casts a small shadow, is 30 to 40 cm

across. These are some of the largest fragments in the field of view around Surveyor V (Day 263, 07:38:46

GMT). (b) Mottled, subrounded fragments, largest of which is about 20 cm across, lying 5 to 6 m from

Surveyor V television camera. These fragments exhibit bright spots 1 to 2 cm across, similar to those on

one of the large rocks observed at the Surveyor I landing site (Day 264, 11:37:01 GMT).
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Fig. 111-25. Small, irregular fragment, about 3 cm across,

close to spacecraft. Various parts of fragment are either

much brighter or much darker than surrounding fine-

grained debris, which suggests that this fragment is

partly glassy. It resembles impactites from Meteor Crater,

Arizona_ and shock-melted ejecta from nuclear craters

(see Fig. 111-27; Day 258, 08:30:15 GMT).

Fig. 111-26. Strange, ragged object on floor of Surveyor V

crater; this object is about 1 cm across and apparently

has holes thro,._h ito It arrived in its present position

during or after firing of the spacecraft's three vernier

engines° This object may be an impactite or it may be an

artifact produced during engine firing (Day 257, 02:49:06
GMT).
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(a)

(b)

D
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cm

Fig. 111-27. Terrestrial impactites and shock-melted eiecta. {a) Impactites from Meteor Crater, Arizona,

formed from shock-melted Kaibab dolomite. (b) Shock-melted ejecta from the small nuclear crater, Teapot

ESS, at the Nevada Test Site of the U.S. Atomic Energy Commission. These specimens are largely glass,

derived from melted alluvium.
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Fig° 111-28. Areas on the lunar
surface near Surveyor V in which

size-frequency distribution of

fragments was measured° The

location of these areas is shown

in Fig. II1-10. (a} Area V-B: on

the floor of the Surveyor V crater.

Smallest fragments resolved are

about 1 mm across, and the larg-

est fragments are about 4 to 5

cm across {Day 265, 12:15:52

GMT}. (b} Area V-D: on the

wall of the Surveyor V crater

approximately 2.5 m from the

spacecraft. Smallest fragments
resolved are about 2 mm; the

largest fragment is about 3 cm

across {Day 257, 07:08:23 GMT}.
(c} Area V-E: on the wall of the

Surveyor V crater about 2.4 m

from the spacecraft. Smallest

fragments resolved are about 1

mm, and the largest fragments

are about 6 to 8 mm (Day 257,

07:08:44 GMT}. (d} Area V-F: on

the wall of the Surveyor V crater

about 3 m from the spacecraft.

Smallest fragments resolved are

about 1mm, and the largest frag-

ments are about 1 cm (Day 257,

07:10:20 GMT)o (e} Area V-G" on

the wall of the Surveyor V crater

about 3 m from the spacecraft.

Smallest fragments resolved are

about 2 mm, and the largest

fragments are about 1 cm across

(Day 264, 12:14:09 GMT}. (f}

Mosaic of narrow-angle pictures

showing area V-H on the wall

of the Surveyor V crater ap-

proximately 2 to 4 m from the

spacecraft. Smallest fragments

resolved are about 4 mm across_

and the largest fragment is

about 10 cm across (Day 257,

07:18:30 to 07:21:58 GMT}.
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F. Size-Frequency Distribution of Fragmental

Debris

The size-frequency distribution of the fragmental debris

was studied in eight sample areas (Fig. III-10) close to

the spacecraft. One sample area (area V-A in Fig. III-10,

and Fig. III-18), near footpad ? ,'s entirely in the loose

material ejected in front of the footpad, and two sample

areas (area V-B in Fig. III-10, Fig. III-28a, and area V-C

I0

I I I I I I I I I I I

I

SURVEYOR .Z_

.SURVEYOR .E

I

I 2 4 8 1.6 5.2 6.4 12.5 25.6 51.2 I 2 4
I mm I cm I m I

PARTICLE SIZE

Fig. 111-29. Size-frequency distribution of fragments on

the undisturbed surface around Surveyor V (solid line)

compared with the average size-frequency distribution

of fragments at the Surveyor I and III landing sites

(dashed lines).

34

in Fig. III-16) are on the floor of the Surveyor V crater

between footpads 2 and 3. The other sample areas are on

the undisturbed northeast and northwest walls of the

crater (Fig. III-10 and Fig. III-28b through f). A total

°7l
106

I0

I

I

I I I I I I I I I I I

2 4 8 1.6 5.2 6.4 12.5 25.6 51.2 I 2 4

mm I cm I m I

PARTICLE SIZE

Fig. 111-30. Size-frequency distribution of fragments in

material disturbed by Surveyor V during landing (areas

V-A to V-C) compared with the average size-frequency

distribution of fragments on the undisturbed surface

(heavy solid line). Area V-A is located in the ejecta

around footpad 2. Areas V-B and V-C contain material

which was kicked up by the footpads during landing,

and which has cascaded down the wall of the Surveyor V

crater and onto the floor of the crater near the spacecraft.
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of 4602 fragments was counted, ranging in size from

1 mm to 6.4 cm.

The cumulative size-frequency distribution of frag-

ments on the undisturbed surface, normalized to an area

100 m: for each of the sample areas, may be compared

with the average size-frequency distribution of frag-

mental debris on undisturbed parts of the lunar surface

at the Surveyor I and HI landing sites (Fig. III-29).

The size-frequency distribution of the fragmental mate-

rial on the undisturbed walls of the Surveyor V crater is

similar to that observed at the Surveyor I and IH sites.

Most of the size-frequency distribution curves for the

debris on the wall of the Surveyor V crater have a slightly

steeper slope, however, than the curves obtained for frag-

mental debris at the Surveyor I and Surveyor IH sites

(Refs. III-9 and III-10). Thus, there are fewer fragments

larger than 6 cm per unit area around the Surveyor V

crater. This paucity of coarse fragments may be the result

of two related factors:

(1) A greater thickness of the fragmental debris layer

at the Surveyor V landing site, compared with the

Surveyor I and IH landing sites.

(2) A greater distance from Surveyor V to the nearest

raised-rim craters with associated strewn fields of

coarse blocks.

The size-frequency distribution of the lumpy, frag-

mental material kicked out on the surface l_y the footpads

during landing is clearly much coarser than the particles

observed on the undisturbed surface (Fig. III-30), as was

the case at the Surveyor I landing site (Ref. III-1). The

areas studied on the floor of the crater between footpads 2

and 3 (areas V-B and V-C in Fig. III-31) contain frag-

mental material not quite as coarse as the disturbed mate-

rial around footpad 2 (area V-A in Fig. III-31). The ejected

ASI

ALPHA- SCATTERING INSTRUMENT

FOOTPAD 3

_\\\ ," I
!

VERNIER

ENGINE 3

VERNIER

ENGINE I

CAMERA

MIRROR AXIS

VERNIER

ENGINE 2

AREA "Xr--B

FOOTPAD 2

EDGE OF TRENCH

EJECTA: BALLISTICALLY DEPOSITED

CASCADE DEBRIS: DEPOSITED

SLIDING AND ROLLING OF

FRAGMENTS DOWN SLOPE

LIMITS OF AREA OBSCURED

BY SPACECRAFT

BY

(_ I I I

FOOTPAD I 0 I 2 m

Fig. 111-31. Location of areas V-A, V-B, and V-C within the material disturbed by Surveyor V during landing. The size°

frequency distribution of the particles within these areas (Fig. 111-30) was obtained from pictures taken after the firing

of the vernier engines 53 hr after landing. Many of the smaller particles were moved a second time during the firing of

the engines.
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material around the footpads and on the floor of the crater

is interpreted to consist primarily of clods or aggregates of
fine-grained material. Most of the clods are irregular to

rounded in shape, and their albedo is similar to, or slightly
lower than, the surrounding undisturbed surface material.

The material between footpads 2 and 3 was probably
ejected by footpad 1 and has cascaded down the wall of
the crater and out onto the floor. The finer particles have

been strewn downslope, and the larger particles have
tended to roll to the base of the slope and accumulate

there. The difference in the size-frequency distribution of

areas V-A, V-B, and V-C is interpreted to be due to a
sorting effect as the material kicked out by footpad 1
cascaded downslope.

A study of the fragmental material in the Surveyor V

crater has shown that many of the fragments, up to a
few centimeters grain size, are aggregates of finer parti-

cles. Almost certainly, many of the small fragments and
grains counted on the wall of the crater in the study of

the size-frequency distribution of fragments are aggre-
gates. This probably accounts for the large number of

particles in the size range of a few millimeters observed

on the wall and for the steepness of size-frequency dis-
tribution curves. Many aggregates probably were also
included in the counts of small particles at the landing

site of Surveyor HI, but we believe that most of the small
particles counted at the Surveyor I landing site are indi-

vidual rocky chips. Care was taken in the study of the
fragmental debris at the Surveyor I landing site to count

only bright, angular objects. Nearly all the fragments
larger than a few centimeters, which were counted at all
three Surveyor landing sites, are believed to consist of

fairly dense, rocky material.

G. Photometric Observations

Preliminary photometric measurements have been made

of the undisturbed lunar surface, disturbed material, and

parts of the trench formed by footpad 2 during landing.

Reduction of 16 photometric measurements of the un-

disturbed lunar surface near the spacecraft indicates that
the photometric function of this site is similar to that

observed at the Surveyor I and Ill landing sites. The esti-

mated normal albedo (normal luminance factor) of undis-
turbed parts of the lunar surface near the spacecraft is

7.9 ±1.0_. Telescopic photometric measurements of the
normal albedo of an area several kilometers in diameter

around the landing site 2 averaged about 9.4_. Apparently,

2H. A. Pohn and R. L. Wildey, personal communication.

Surveyor V landed in a dark spot or patch within a rela-

tively bright area. This bright area is part of the ray

system of Theophilus, and the dark patch may simply be
a gap in the ray.

The debris kicked out on the floor of the Surveyor V

crater in front of the footpads has a photometric function

similar to that of the undisturbed material, but is slightly
darker (Fig. III-32). The normal albedo of this material
is estimated to be 7.5 ±1.0_, about one-twentieth lower

than that of the undisturbed surface. Dark, rubbly mate-
rial exposed in the wall of the footpad 2 trench also has
a normal albedo about one-twentieth lower than the un-

disturbed surface. Although the contrast in albedo be-

tween the ejected debris and the undisturbed surface is
less than that observed at the Surveyor I and III sites

(Refs. III-9 and III-10), the albedo of the dark, ejected
material is nearly the same at the Surveyor III and V

sites (Ref. III-10).

Parts of the floor and walls of the trench formed by
footpad 2 have been smoothed by the pressure and slid-
ing of the footpad (Fig. III-14). As observed in the foot-

pad imprints at the Surveyor III landing site (Ref. III-10),
these smoothed surfaces are brighter than the undisturbed

parts of the lunar surface at certain phase angles. This
effect is a result of the difference in photometric function

between the rough, undisturbed surface and the smoothed
surface. The smoothed floor of the trench is about 105

brighter than the undisturbed lunar surface in the mid-
lunar morning, and a small part of this smoothed surface

is about 205 brighter.

Both photometric targets on the spacecraft were illumi-

nated during the middle of the lunar day (Days 257
through 263), which permitted a comparison to be made
of photometric measurements of each chart. Luminance

measurements of the photometric target on the space-
craft leg were consistently lower than measurements

made of the omni-photometric target. The preflight cali-
bration data indicated that the light-transfer character-

istic determined from observation of each photometric
target was nearly identical. We concluded, therefore, that

the photometric properties of the photometric target on
the spacecraft leg have changed between the time of pre-

flight calibrations and the photometric observations on
the moon.

The gray steps 5, 6, 7, 11, 12, and 13 of the photometric
target on the spacecraft leg (Fig. III-33) showed an in-

crease in reflectance from preflight calibration ranging
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Fig. 111-32. Footpad 3 of Surveyor V spacecraft. Black, tubular object extending through the center of pic-
ture is the omnidirectional antenna boom. Dark, lumpy material extending to the right of the footpad is

, disturbed lunar surface material ejected in front of the footpad during landing (Day 263, 06:52:37 GMT).

from 1.5 to 4.8_. The gray steps 8, 9, and 10 had a de-
crease in reflectance from preflight calibration varying

from 11 to 18_o This change in gray step reflectance can
be attributed to a very light coating of material having a

normal albedo (normal radiance factor) between 8 ±3_.

It is hoped that the error in this estimate can be reduced

by more accurate measurements based on magnetic-tape
records of the video signal.

The material coating the photometric target is too

fine-grained to be resolved by the camera, indicating a
grain size smaller than 0.3 mm. We believe this material
consists of lunar particles because its normal albedo (nor-

mal radiance factor) is about the same as that of the un-
disturbed lunar surface material (about 8_). The target

surface is rough in texture and inclined at 45 deg to the

lunar vertical, which would permit fine-grained material

to adhere easily to the target.

"Fhe leg 2 photometric target was probably contami-

nated during landing by deposition of fine lunar material

sprayed up by footpad 2 as it dug a trench while the
spacecraft slid down the inner slope of the Surveyor V

crater (Fig. III-34). Also, the firing of the vernier engines
scattered some lunar material over the spacecraft, as indi-
cated by material deposited on top of the compartments

(Fig. III-35). It cannot be determined which event was
more significant in coating the photometric target with

lunar surface material, since the target was first observed
under solar illumination nearly 22 hr after the vernier

engine firing experiment.
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Fig. 111-33. Picture of the photometric target mounted on leg 2. The gray steps are indicated by numbers. A

small pin protrudes from the center of the target, parallel to the camera line of sight, and casts a shadow

downward across the target. The scattered, small dark spots across the photometric target are caused by

dust within the camera's optical system and do not represent lunar material (Day 259, 04:36:25 GMTI.
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Fig° 111-34. Narrow-angle picture of footpad 2. Lunar surface material was deposited on top of the foot-

pad after landing as the spacecraf t slid down the inside slope of the Surveyor V crater and dug a trench

about 1 m Io, ,_ (Day 256, 06:22:49 GMT).
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Fig. 111-35. Narrow-angle picture of part of the top of compartment B of the Surveyor V

spacecraft showing small clod of lunar surface material, dislodged by the exhaust from

the vernier engines during an erosion experiment 53 hr after landing. This material

has impacted the top of the compartment and broken into very fine grains 1Day 258,

04:31:24 GMT|.
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H. Interpretation of Geologic Observations

Several lines of evidence support the interpretation that

the Surveyor V crater was formed by drainage of surficial
fragmental debris into a subsurface fissure. The absence
of a raised rim and the dimple shape of this crater sug-

gest that it was not formed by impact, since experi-
mental impact craters in this size range have raised rims
and generally have profiles that are concave upward.

The elongated shape and compound character of the
Surveyor V crater, and the fact that it is a member of a
chain of small craters, suggest that it has been localized

by a linear subsurface structure. This suggestion is
strengthened by the facts that the Surveyor V crater and

the crater chain are aligned parallel with the major linear
features of this region of the moon, and that there is a

large number of similarly aligned, small craters and crater

pairs in the vicinity.

The shapes of small craters in the vicinity of Surveyor V
and the interaction of the spacecraft footpads with the
lunar surface show that the near-surface material is com-

posed of relatively fine-grained debris with very low
cohesion. The mechanical properties of this debris are

similar to the properties inferred for the lunar surface
material at the Surveyor I and IH landing sites (Refs. III-11

to III-13). The cohesion of the debris is sufficiently low

that, if a cavity or fissure were opened beneath the debris,
it would tend to flow or drain into the cavity, particularly

if agitated by impact events or shaken by moonquakes.

As indicated by the size of the smallest craters with

coarse, blocky rims in the area around Surveyor V, the
thickness of the fragmental debris that might flow is
several "meters. Thus, it would be possible for a crater

the size of the Surveyor V crater to be formed by the

drainage mechanism. It is probably significant that the
characteristic dimension of the aligned crater pairs and

elongated craters in the vicinity of Surveyor V is about
10 m. If all of these craters have been formed by drainage,

it suggests the thickness of the debris that flows is about

3 m, a result consistent with the evidence derived from
craters with blocky rims. The small, concave floor of the

Surveyor V crater probably was formed after most of the

drainage had ceased. Small craters on the moon tend to
fill up fairly rapidly with ballistically deposited debris

produced by meteoritic bombardment.

The walls of the Surveyor V crater provide a natural

exposure of material that originally lay at depths of as
much as a meter beneath the surface of the debris layer.

Much of this material appears to consist of clods or

aggregates of fine particles. Many clods appear to be

complex objects composed of smaller aggregate units and,
in some cases, angular chips of rock. Observable differ-

ences in the photometric properties of various clods sug-
gest that they vary in porosity or have been compacted

to various degrees. Both the aggregates and complex

aggregates probably have been formed by shock como
pression of finer fragmental material in the course of

repetitive impact cratering.

A clearer picture of the subsurface structure of the
lunar surface debris layer, or regolith, has thus emerged

from our study of the Surveyor V television pictures° At

depths below about 10 cm, the regolith is probably com-

posed mainly of shock-compressed aggregates ranging
from a few millimeters to 3 cm in diameter, set in a matrix

of less coherent, finer particles. Rocky chips and frag-

ments larger than a millimeter are dispersed as a sub-
ordinate constituent of the debris. Most fragments larger

than 3 cm, however, are rocky material. Both the frag-

mentation and aggregation of the material in the debris

are probably the direct results of prolonged meteoritic
bombardment of the lunar surface.

It is important to recognize the complicated history
of the lunar surface debris in evaluating the chemical

analysis provided by the alpha-scattering instrument on
Surveyor V (see Section VII of this Technical Report). The
instrument was lowered from the spacecraft and came to
rest on loose debris that had been kicked out on the wall

of the Surveyor V crater during landing. This debris is

composed mostly of aggregates of fine particles; the

particles of which the aggregates are composed probably
have been derived from a wide region on the lunar surface

and transported ballistically to the site of the Surveyor V
crater. The analysis does not, therefore, represent a single
rock, but a mixture of rock particles, possibly of diverse

origin. Most particles probably have not been transported
more than a few kilometers, however, so that the analysis

represents, for the most part, a mixture of rock particles
derived from a small area on Mare Tranquillitatis.
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IV. Lunar Surface Mechanical Properties
E. M. Christensen, S. A. Batterson, H. E. Benson, R. Choate, R. E. Hutton,

L. D. Jaffe, R. H. Jones, H. Y. Ko, F. N. Schmidt, R. F. Scott,

R. L. Spencer, and G. H. Sutton 1

Information on mechanical properties z of the lunar sur-
face was derived from data and observations associated

with the Surveyor V lunar-landing mission. It is based pri-
marily on studies of pictures showing the disturbances

caused by the landing, and a comparison of pictures taken
before and after firing of the vernier engines. Analyses and

laboratory simulations have been conducted to assist in the
interpretation of results.

Surveyor V landed on a shoping crater wall and slid
downslope, with the footpads forming trenches, before

reaching its final position. The vernier rocket engines were
fired to test the effects of rocket engine exhaust upon the

lunar surface. Studies of the landing, especially of the

trenches formed during the slide and the effects created
by the vernier engine firing, provided significant, addition-

al knowledge of the lunar surface mechanical properties.

A. Spacecraft Landing

1. Description

The basic configuration and landing mechanism for

Surveyor V were essentially the same as for Surveyors I

'In the brief time available to prepare this report, prior to the next

Surveyor mission, it was impossible to obtain the concurrence of all

the authors.

:In this section, centimeter-gram units are used. To convert to foot-

pound units, the following factors apply: 1 m = 3.28 ft; 1 em =
0.394 in.; 1 N (newton) = 105 dynes -- 0.225 Ib; i N/cm "_= 1.45

lb/in. -_.

and HI (see Section I, Fig. I-l). During landing impact, the
three landing legs rotate upward against the resistance of

the shock absorbers. Following the initial impact, the
shock absorbers re-extend, returning the legs to their pre-

touchdown positions. Additional capability for energy dis-
sipation is provided by crushable footpads and crushable
honeycomb blocks mounted on the underside of the space_

frame, inboard of each leg.

The actual landing of Surveyor V can be reconstructed

quite accurately from various telemetry signals in con-
nection with available landing-dynamic simulations. Per-

tinent telemetry data are:

(1) Digital. indications of spacecraft altitude; three or-

thogonal velocities; three orthogonal, angular posi-
tions; one accelerometer reading; and three vernier

engine thrust commands.

(2) Analog signals monitoring three strain-gage bridges,

one on each landing leg shock absorber, indicating
its axial loading.

(3) Post-landing television camera coverage of footpads,
crushable blocks, and areas on the lunar surface in

which these spaceeratt members contacted the sur-
face and came to rest.

(4) Post-landing attitude determinations based on the
position of the planar array antenna, horizon sight-
ings, and star sightings:
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Fig. IV-1. Surveyor spacecraft configuration and coordi-

nate system.

An evaluation of the data indicates the following sequence

of events during final descent and landing. At an altitude

of 4.8 ±0.7 m, all three vernier engines were cut off, result-

ing in a free-fall period, during which the spacecraft verti-

cal velocity increased to 4.2 ±0.4 m/sec at the time leg 1,

the first to contact, encountered the lunar surface. Slight

angular motions were indueed at cutoff of the vernier en-

gines, increasing immediately before initial touchdown to

a pitch of 0.7 deg/sec, a yaw of 0.5 deg/sec, and a roll of

0.4 deg/sec. (Pitch, yaw, and roll are rotations about the X,

Y, and Z axes, respectively (Fig. IV-l). After leg 1 contact,

a sudden negative pitch motion with a velocity in excess

of 13 deg/sec occurred (range of pitch gyro was exceeded).

Little angular motion in yaw and roll occurred until legs 2

and 3 contacted the ground almost simultaneously: leg 2,

190 msec and leg 3, 197 msec after leg 1 impact. A slideout

period of approximately 1.7 sec followed, during which the

spacecraft rolled approximately ÷ 5.9 deg with less than

a ÷ 1-deg change in yaw.

Figure IV-2 shows the time histories of the axial forces

in the landing-gear shock absorbers from prior to surface

contact until after the spacecraft reached its final position.

For each leg, the initial high loading, caused by the first

impact, lasted approximately 0.2 to 0.25 sec. This was fol-

lowed by a near-zero force period lasting approximately
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Fig. IV-2. Strain-gage telemetry data showing shock-absorber axial load histories during landing of Surveyor V.
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0.6 to 0.8 sec, indicating a rebound of the spacecraft due

to the landing-gear spring forces. Finally, a second
low-energy impact was registered, followed by a poorly

defined, low-amplitude oscillation. Similar oscillations, ob-

served during the Surveyor I and III touchdowns, were
related to the combined elastic properties of the spacecraft
and the lunar surface (Refs. IV-1 and IV-2)° Following the

oscillations, the strain gages indicated a small loading, cor-

responding to the static loading of the shock absorbers,
due to the 480-N lunar weight of the spacecraft. Table IV-1

gives the maximum force levels experienced by each shock
absorber, and the impact times of each footpad.

The relative timing of the initial footpad impacts indi-
cates that the spacecraft rotated approximately 17 deg

between the footpad 1 impact and the footpad 2 and 3

impacts. The final angle between the roll axis and lunar
vertical is about 19.5 dego The final position of the space-

Table IV-1. Maximum shock-absorber forces and

footpad impact times

Maximum shock-absorber Time of impact after
initial contact,

Leg assembly force, N
sec

I 5620 ± 350 0

2 7280 ±350 0.190

3 7300 ±350 0.197

craft, following the slide (see Section III, Fig. III-7), sug-

gests that the initial contact of footpad 1 occurred on the
level, or gently sloping, surface just ouside of the crater.

Also, differences in final penetration of the footpads, a pre-
touchdown 2.5-deg, off-vertical attitude of the spacecraft,
or a combination of these factors could account for this

angular deviation°

2. Television Observations of Spacecraft/Soil Interactions

Surveyor V landed on the inner slope of a 9- )< 12-m cra-
ter. Following initial touchdown, it slid downslope creating

dearly visible surface disturbances. The distance that foot-
pad 2 slid was 81 -+-2 cm, as indicated by an almost-straight
trench shown in wide-angle pictures in Fig. IV-3. The

trench, including footpad (diameter 30 cm), is 1.1 m long.
The trench depth is estimated to be from 8 to 10 cm at the

uphill end and from 3 to 6 cm at the downhill end. As
shown in Fig. IV-3, the rim of the trench has crumbled,

partially filling the trench and obscuring visibility of
the bottom. The axis of the trench, i.e., the direction of the

footpad motion, is estimated to have been parallel to
the spacecraft Y axis within 2 deg (Fig. IV-l).

The composite images in Fig. IV-4 indicate the range

of the spacecraft movement during the landing phase of
Surveyor V. The two images represent the probable space-
craft position at the time of the first landing impact and

the final position of the spacecraft.

Fig. IV-3. Wide-angle mosaic of footpad 2 and the trench formed during landing of Surveyor V. The depression

formed during the first impact of footpad 2 can be seen at the right-hand end of the trench (Day 257', between 04:00
and 06:00 GMT; Catalog 5-MP-19).
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Fig. IV-4. Spacecraft motion during landing. |a) Probable spacecraft position at'time of first landing impact. |bl Final

position after the spacecraft had come to rest.
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The depression caused by the first impact of footpad 2
can be seen at the right-hand end of the trench (Fig. IV-3);
this feature can be seen more clearly in Fig.IV-5. A footpad

penetration of 12 cm is estimated to have occurred here.

The fragment in the center of the trench at the right-hand
end is estimated to be 7 cm long and 5 cm high. The frag-

ment visible to the right of the initial imprint is estimated
to be approximately 12 cm in diameter. These fragments

were used in determining the trench depth. Clear evidence
of footpad-scraping action can be seen along the trench

wall near the footpad (Fig. IV-6). The smooth appearance
of this area indicates that the material consists primarily

of very small-sized particles.

At impact, footpad 2, after possibly grazing the 12-cm-

diameter fragment, penetrated the soil and ejected mate-
rial for a distance up to 80 cm (Fig. IV-7). One fragment
(apparently a soil clump), 6 cm long, remained intact after

being thrown a minimum distance of 30 cm. In the subse-
quent downslope motion, footpad 2 displaced soil in the

manner of a snowplow. The outer rim of the footpad

tipped downward as soil piled up in front of the footpad
and was pushed and thrown forward and sideward. The

ejected material beside the trench extends outward for
approximately 30 cm; ejected material beyond footpad 2

extends for 75 cm along the direction of the spacecraft
motion. Coarser fragments of this ejected material are

shown in Fig. IV-8.

The movement of footpad 3 also caused some trenching

during the landing and subsequent sliding motion. The
visibility of this area to the television camera is partially

obscured, but it appears that footpad 3 moved approxi-
mately the same distance as footpad 2. A part of the foot-

pad 3 trench disturbance can be seen through the landing
leg structure in Fig. IV-9. The pattern of large clumps and

fine soil visible above and to the right of the footpad indi-
cates the extent of material ejected by footpad 3. The ma-

terial ejected from the surface by the Surveyor V footpads
exhibits less contrast with the undisturbed surface than

did the soil ejected by Surveyors I and III.

Fig. IV-5. Narrow-angle picture of the depression formed by the first landing impact of footpad 2 (Day
258, 08:29:44 GMTI.
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Fig. |V-6. Narrow-angle picture showing detailed view of a part of the trench wall formed by the scrap-

ing action of footpad 2 (Day 257, 04:42:06 GMT).
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Fig. IV-7. Narrow-angle mosaic showing the trench formed by footpad 2 during the spacecraft landing (Day 258.

about 08:00 GMT; Catalog 5-MP-34).
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Fig. IV-8. Narrow-angle mosaic of footpad 2 and some of the lunar material ejected during the landing and the for-

mation of the trench (Day 255, about 10:11 GMT; Catalog 5-MP-26l.
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Fig° IV°9. Wide-angle mosaic of spacecraft landing leg 3 and footpad 3° A portion of the trench formed by footpad

3 during the landing can be seen through the leg structure. The throwout pattern of lunar material ejected during the
landing is visible above and to the right of the footpad (Day 263, about 06:50 GMT; Catalog 5-MP-33).

Both footpads 2 and 3 were tipped downward by the
trenching, and lunar material was deposited on top of the

footpads (Figs. IV-10 and IV-11). No visible soil was de-
posited on the footpad tops of Surveyors I or III during
landing. To improve the capability of detecting material

on the footpads, the tops of footpads 2 and 3 (Surveyor V)
had been painted with a low-reflectivity gray with several

narrow, white stripes. A pre-launch view of footpad 2 in
which the paint pattern can be seen is shown in Section

VIII, Fig. VIII-1. Portions of the white stripes are visible
in post-landing pictures of the footpads (Figs. IV-10 and

IV-11). Figures IV-12 and IV-13 show footpad 3 tilted,
with its inboard rim raised free of the surface. The

raised ridge of the footpad impression in the lunar soil can
be seen just above the antenna boom in Fig. IV-12. In

Fig. IV-13, the conical surface of the footpad appears un-
damaged; i.e., no crushing occurred. Footpads 2 and 3 are
tilted to an angle of approximately 16 deg, relative to the

plane of the three footpads. This is based on a study of the
elliptical shape of the footpad image and the position of

the tilted footpad, relative to the leg structure. This is the
maximum tilt possible, since at this angle the footpad top

plates contact the leg struts.

There is evidence that the crushable blocks contacted

the lunar surface during the landing. Figure IV-14 is a

narrow-angle view of crushable block 3 in which a small
rock or clod appears to be wedged between the block and

its thermal shield. In a picture taken later, at a low sun
angle, this fragment is no longer visible, but a deposit of

soil particles can be seen adhering to the bottom edge of
the block (Fig. IV-15). No clear evidence of crushable

block imprints was obtained. However, the probable loca-
tions where crushable block imprints might exist are in
areas obscured or shaded by the spacecraft.

The appearance of the lunar surface material at the
Surveyor V landing site is similar to that in the vicinity
of the Surveyor I and III landing sites (Refs. IV-1 and

r'T-2). The soil is granular, slightly cohesive, and generally

fine-grained. Some lighter appearing, or more reflective,
fragments are seen and presumably are rocks. Darker

appearing fragments are presumed to be soil aggregates of
both natural origin and those produced by the spacecraft

landing.
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Fig. IV-10. Narrow-angle picture of top of footpad 2 showing lunar material that collected on the footpad

during landing (Day 255, 05:45:22 GMTI.
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Fig° IV-| 1o Narrow-angle picture of top of footpad 3, showing the lunar material on the footpad (Day

265t 13:48:13 GMT)o
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Fig. IV-12. Wide-angle picture of footpad 3. The footpad imprint in the lunar material can be seen above

the antenna boom. The footpad remained tilted after the landing phase. Ghost image of the helium

tanks was caused by incomplete erasure of previous image on vidicon (Day 254, 23:50:28 GMT).

54 JPL TECHNICAL REPORT 32-1246



Fig° IV-13. Narrow-angle picture of the inboard section of footpad 3° The tilted footpad and the footpad

imprint can be seen (Day 255, 02:09:40 GMT|.
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Fig.IV-14.Narrow-angleviewtakenthroughtheauxiliarymirrorsshowingthebottomof crushable
block3. A smallrockor clod,seenwedgedbetweentheblockandthethermalshield,wasprobably
pickedupduringthe first landing impact (Day 263, 11:47:23 GMT).
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Fig. IV-15. Narrow-angle view of crushable block 3 taken through the auxiliary mirrors under low sun

illumination. Lunar material can be seen adhering to the bottom of the block. The material probably was

picked up during the first landing impact (Day 266, 06:02:50 GMT|.
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B. Dynamic Simulations

Computer simulation studies of landings, using several

analytical soil models, are being performed to estimate the
mechanical properties of a surface material that will yield

penetrations and shock-absorber axial loads similar to
those obtained during the Surveyor V landings. The com-

pressible soil model used in the simulations performed so
far is described below (Refs. IV-3 and IV-4). The best cor-
relation obtained to this date is shown in Fig. IV-16, which

compares the shock-absorber force histories for a simu-

lated landing on a lunar surface with a 2.7-N/cm 2 static
bearing strength, with the histories from S_trveyor V. The

impact velocities used are 3.7 m/sec vertical and 0.3 m/sec
horizontal, the initial estimates of touchdown velocities.

The slope of the landing surface was assumed to be 17 deg,
with the spacecraft in a horizontal position at the moment

of footpad 1 impact; penetrations by footpads 1, 2, and 3,
obtained in this simulation, are 6, 12, and 12 cm, respec-

tively. Because of limited visibility, it is not possible to
estimate the initial penetrations of footpads 1 and 3 of

Surveyor V. The analytical simulation indicates that crush-
able blocks 2 and 3 each penetrated about 8 cm and that
crushable block 1 did not touch the surface.

The soil model used in this analysis is completely com-

pressible; the forces developed on the footpad are ex-

pressed by

F=p0A(l+cs)+ pl pz A_ 2
p._-- pl

where

F = total force on footpad

p0 = static bearing pressure of surface

A = effective footpad area

c = frictional constant

s = depth of penetration

01 = original density of soil

p2 = density of soil compressed by footpad

Figure IV-17 is an illustration of the soil model being
penetrated by a footpad. The surface material, initially of

density, p1, is compressed at pressure, po, to a density, oz,

under the penetration of a footpad. Forces resisting pene-
tration are the static bearing pressure that is assumed con-

stant with depth, friction that increases linearly with

penetration, and soil inertia. For the above soil model the
assumed relationships between the density of the soil,
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Fig. IV-16. A comparison of Surveyor V landing data

with analytically obtained shock-absorber force/time
histories.

F=Po A(I+cs)+ _A_ 2

Fig. IV-17. Soft surface model for the landing dynamics
analysis.

density of the soil compressed by a footpad, and static

bearing pressure are shown in Fig. IV-18. As indicated, for
a 2.7-N/cm 2 bearing-strength surface, the density of the

undisturbed material would be 1.1 g/cm_. By use of other
hypothetical relationships between static bearing pressure,
initial density, and the final density, the numerical values

presumably will result in better correlations between the

analyses and the strain-gage data. The 1.1-g/cm 3 density
of the soil is lower than some estimates derived from pre-

vious Surveyor landings, and may be changed as the agree-
ment between simulation and actual landing is improved

in subsequent solutions. It should be pointed out that data
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in Ref. IV-2 indicate that the lunar surface material

has little compressibility. Dynamic analyses using incom-

pressible soil models have not yet been performed for

Surveyor V.

Another difference between the results of the Surveyor V

landing analysis and those made for the previous missions

is in the value obtained for the static bearing pressure of

the surface° For the Surveyor V analysis with the above

soil model, static bearing pressures < 3.4 N/cm 2 have re-

sulted in the best agreement with flight data. Simulations

of the earlier missions, using the same soil model, showed

good correlation with landing data for static bearing pres-

sures of 3.4 N/cm z (Refs. IV-3 and IV-4). However, the

downslope landing of Surveyor V produced a horizontal

loading on the soil with a possible deformational mode

which would result in greater footpad penetration. Fur-

thermore, good correlation of shock-absorber forces has

been obtained, assuming a rigid-surface landing simulation

for Surveyors I and III; however, it has not yet been at-

tained for Surveyor V. A rigid surface was defined as one

with a bearing strength exceedih_ 6.9 N/cm 2, since the

footpad crushable material fails for higher loads.

These preliminary results suggest that the lunar surface

material at the Surveyor V landing site is somewhat weaker

than the material at the previous landing sites.

C. Soil Characteristics: Spacecraft Slide

The distance that the spacecraft slid is a function of the

drag forces between the three footpads and the lunar sur°

face, and the initial spacecraft velocity parallel to the

landing surface. This velocity is approximately 1.2 m/sec

assuming zero horizontal velocity at footpad i touchdown,

4.2-m/sec vertical landing velocity, and a 17-deg ground

slope. Since a velocity of 0.9 to 1.2 m/sec is consistent with

both the time and distance associated with the spacecraft

sliding, it is estimated that any horizontal spacecraft veloc-

The following effort was an attempt to obtain some

bounding numbers for the lunar surface characteristics.

Since the spacecraft is at rest on a 20-deg slope 3, a mini-

mum value of /t,,_, = tan 20 deg = 0.36 is obtained for

both the internal angle of friction of the soil and the ex-

ternal coefficient of friction between the footpads and the

soil. Because the spacecraft came to rest at about the same

angle, the minimum effective coefficient of friction (brak-

ing) between the footpads and the surface has the same

value. Since the footpads have penetrated the surface, the

total static tangential force, F, is probably a more meaning-

ful number. This is F=Mg sin 20 deg=164 N, where M

is the landed mass of the spacecraft and g the lunar gravity.

:'This value is based on preliminary data and was used as the basis
for these calculations.
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During landing, the spacecraft slid to a stop along the
sloping surface. The time,tl, from initial touchdown of foot-

pads 2 and 3 to stopping is known to be about tt = 1.7 sec
from the telemetry data.

Assuming a constant stopping force fie and pure linear

,notion of the spacecraft parallel to the slope, the following

equation is derived from the equation of motion:

- ( = 330NF_,=M gsin0+ t_]

where g and 0 are lunar gravity and angle of the slope

(20 deg), respectively, and x is the spacecraft motion along
the slope. The terms xl and tr indicate final distance and

final time, respectively. F_ is about twice the static tangen-
tial force. (This force is below the resolution of the shock-

absorber strain gages.) The initial downslope velocity x0 is

2xf

ko - - 1.0 m/sec
tl

This is somewhat lower than the value of 5o = 1.4 m/sec
resulting from the downslope component of the vertical

landing speed (4.2 m/sec), thus indicating that the assump-
tion of a constant stopping force is not valid, or possibly

indicating there was a small amount of horizontal velocity,
about 0.4 m/sec upslope, at the time of landing.

An effective coefficient of friction can be estimated from

L
_ett -- F, Mg cos 0 = 0.73

However, this number is of limited value because there

were obvious significant variations in the trenching and in
the normal force of the footpads against the lunar surface,

as indicated by the strain gages and trench depths. Per-
haps a more meaningful number is the average stopping
pressure, P,, supplied by the soil against the footpads

A_

Estimating an average depth of ._penetration of 5 cm,
A,. _ 375 cm'-' (three footpads); P_ _ 0.9 N/cm 2. This
value for _ is consistent with the stalling pressure ob-

served during the Surveyor III lunar trenching operations

using the soil mechanics surface sampler (Ref. IV-2).

D. Lunar Soil Erosion Test

The lunar soil erosion test was performed to determine
the characteristics and amount of lunar soil erosion caused

by the interaction of the spacecraft vernier rocket engine
exhaust gases and the lunar surface. The results will be

used to estimate the amount of soil erosion during a land-
ing of the Apollo Lunar Module (LM), and to estimate

such lunar surface properties as permeability, cohesion,
and particle size.

1. Erosion Phenomena

Soil erosion caused by rocket engine exhaust gas im-
pingement is of three basic types, which usually occur in
combination, although one mode may predominate:

(1) Viscous erosion (Ref. IV-5): erosion by entrainment

of soil particles as the gas flows over the surface.

(2) Gas diffusion erosion (Ref. IV-6): movement of the

soil caused by the upward flow of gas through the
pores of the soil during and after the firing.

(3) Explosive cratering (Ref. IV-7): rapid cratering
caused by the exhaust gas pressure on a normal sur-

face exceeding the bearing capacity of the lunar
surface.

In the lunar environment, where full expansion of the ex-
haust plume occurs during the vernier engine firing, the

third process is considered unlikely to occur for the firing
of the LM descent engine or the Surveyor vernier engines

at their respective thrust levels and nozzle heights above
the lunar surface.

a. Viscous erosion. When a soil is subjected to rocket en-

gine exhaust in a direction normal to the soil surface,

erosion may occur, depending on the forces transmitted to

the soft by the gases and the properties of the soil. The gas
that flows radially along the surface may dislodge soil
particles from the surface and entrain them. The erosion

characteristics of a bed of particles under vacuum condi-
tions (10-' torr) were investigated by Land and Clark

(Ref. IV-8) for various particle sizes and nozzle heights.
Their results showed that, for the nozzle heights where
erosion occurred, erosion was more rapid in soils with

coarser particles (within limits) than in fine-grained soils,

and that the maximum crater depth was not necessarily
directly below the nozzle. Often the resulting crater was

in the shape of the lower half of a toroid. Observations
show, and theory predicts, that the soil particles leave the

surface in a fairly fiat trajectory when the surface erosion
is small. As the erosion depth increases, the trajectory

angle between the particle and the surface increases.
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b. Gas diffusion erosion. The erosion of a soil surface by

the diffusion of exhaust gases was investigated by Scott
and Ko (Ref. IV-6) to explain the effects of Surveyor ver-

nier engine firing tests against earth soils under vacuum
(Refso IV-9 through IV-11)_ During a firing, exhaust gases

flow into and through the porous soil exiting upward at
some radial distance and possibly lifting soil from the sur-
face. For soil removal to occur during this period, the

engine must be fired for a time sufficient to achieve a sig-

nificant upward flow of gases at a distance from the central
higher pressurized region. If a crater forms during this
period of firing, then it would have the shape of a half of

a toroid. Upon sudden removal of the surface pressure at
engine shutdown, some of the gas diffused into the soil

during firing will flow to the surface and may produce an
eruption. Such a disturbance would occur in the high-

pressure region directly under the engine.

Whether the diffusion process has reached a steady state

depends on the porosity and the permeability of the soil
medium. The extent of the potentially unstable (erodable)

portions of the soil also depends on these parameters. The
depth of erosion is largely influenced by the cohesion of
the soil, but not the extent of horizontal erosion. Therefore,

it is possible to estimate the permeability and cohesion of
the lunar soil.

2oTest Explanation

Because the lunar surface loadings developed by exhaust

gases from the LM descent engine during landing and by a
Surveyor vernier engine firing at low thrust on the moon

are similar, it was possible to simulate, in the lunar en-
vironment, the soil erosion effects to be experienced during

a LM landing.

To simulate the viscous erosion anticipated by LM, a

firing time of about 5 sec would have been required for the

Surveyor engines at their minimum thrust level. This takes
into consideration the pressure profiles exerted on the soil
by the exhaust gases from the Surveyor engines located a
fixed distance above the lunar surface and from the LM

engine during a nominal descent to the lunar surface, i.e.,

from a negligible value at a 25-ft altitude to the maximum
value at engine cutoff, 10 sec later.

The simulation of the gas diffusion eruption phenome-
non would require aSurveyor engine firing time equivalent
to 1,/100 of the surface loading time during the LM de-

scent, or approximately 0.1 sec. This time ratio is based on

the theory (Ref. IV-6) that, for equivalent loading levels,
times should be scaled as the square of the ratio of the
nozzle exit radii.

It was apparent, therefore, that both erosion effects
would not be simulated with a single vernier engine firing.
Indications of the viscous erosion effects were available

from the Surveyor III second landing event. During that
event, an erosion trench over 1 m long and possibly 2 to 5

cm deep, was caused by the continuous firing of the vernier

engines during the 2-sec interval in which the engine
passed above the trench (Ref. IV-2). However, diffused
gas eruption was minimized because the spacecraft lifted
off the moon without a sudden engine shutdown. There-

fore, it was decided that the lunar soil erosion test on

Surveyor V should be devoted, within spacecraft con°
straints, to obtaining the best simulation of engine shut-
down effects.

To ensure predictable performance (temperatures were

higher than normal engine starting temperatures) and to
permit a complete engine performance telemetry cycle, a

firing time of 0.55 sec was considered the minimum that
should be performed. By using the minimum firing time, it
was felt that the viscous erosion effects would be mini-

mized while "the gas diffusion effects would be maximized;

thus, the results of the experiment could better be analyzed
to give meaningful conclusions. The selection of a short

firing time and a minimum thrust level also reduced pos-
sible hazards to the spacecraft such as tipping over, ther-

mal degradation, and degraded mirror optical properties°

3. Observed Effects

At 05:38 GMT on Day 256, approximately 53 hr after

landing, the Surveyor V liquid-propellant vernier engines
were fired at a low thrust level for 0.55 -+-0.05 sec. En-

gines I and 3 fired at a 120 ±22 N thrust level, and vernier

engine 2 fired at a 76 ±18 N thrust level. These thrust
levels were determined by strain gages on the engine sup-

port structures during vernier firing (see Surveyor V Mis_

sion Report, Part I). During the firing, the spacecraft
remained stationary except for the motion of the alpha-
scattering instrument sensor head. Observations of the

effects of the vernier engine firing were made by compar-

ing television pictures obtained bef6re and after the firing.
Pictures of the lunar surface directly below the engines

and in the near vicinity of the engines, as well as pictures

of various spacecraft components, were used to establish
the soil erosion effects. The location and relationship of

the Surveyor V vernier engines and television camera to
other spacecraft components that appear in the pictures

are shown in Figs. IV-19 and IV-20. Areas where erosion
effects were detected are shown in Fig. IV-20. The erosion
caused by vernier engine 3 provided the primary erosion

experimental data. The area under vernier engine 1 was
partially visible.
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a. The lunar surface below vernier engines 1 and 3.
Changes in the lunar surface caused by erosion beneath

vernier engine 3 can be seen in the series of pictures in

Figs. IV-21 and IV-22, which are the areas E_M and E._Das
illustrated in Fig. IV-20. (E:_Mand E:_Dare the areas under

engine 3, viewed, respectively, by mirror and directly.)
Each series of pictures shows the lunar surface as illumi-
nated at various sun elevations progressing from morning

to late afternoon. In the pictures taken 4 hr before and 2
hr after firing (Fig. IV-21b and c, respectively), it is evident

that there has been movement of fragments on the surface
and a change in surface structure, thereby proving that

soil was moved. Since no pictures could be taken during
the firing, these are the closest in time (pre- and post-firing)

to the firing of the vernier engines. Soil erosion known to
have occurred below and adjacent to vernier engine 3
includes:

(1)

(2)

Erosion of a layer of soil of indeterminate depth by
viscous erosion during the firing from the area seen

in the large auxiliary mirror. Evidence for this ero-
sion consists mainly of the observations that most, if

not all, soil fragments visible in the mirror pictures
have been moved by the firing.

Formation of a shallow, crescent-shaped crater di-

rectly below vernier engine 3. This crater was formed
at engine shutdown by eruption of exhaust gases

that had diffused into the soil during the engine
firing. The crater is 20 cm in diameter and 0.8 to

1.3 cm deep. The crater is best seen when accentu-
ated by shadows occurring in the late afternoon pic-

tures (Figs. IV-21 and IV-22). The open end of the
crater points approximately toward the sensor head

of the alpha-scattering instrument.

In an early, pre-firing, wide-angle picture of the auxili-

ary mirror, a slightly darker area that may have been a
natural crater can be faintly seen downslope from vernier

engine 3 (Fig. IV-23). The location of this darker area is
such that it is unlikely that the spacecraft landing created

it. This depression is barely evident in post-firing pictures.

Part of the surface below vernier engine 1 was directly
viewabie with the television camera. However, shadows

prevented the return of pictures of the area before the

firing. Although the area was free of shadows in the lunar
afternoon, as can be seen in Fig. IV-24, the effect of the
vernier engine firing on the surface has not been deter-
mined. This is attributed to the fact that the amount of

surface area actually viewable is small and that there are

no pre-firing pictures.

b. Erosion effects on surrounding areas.

Area around alpha-scattering sensor head. The surface

area immediately adjacent to the alpha-scattering instru-
ment shows most clearly the extent and amount of soil dis-

turbance caused by the vernier engine firing. Figs. IV-25
and IV 26 are controlled mosaics (each frame orientation

and center is correct) composed of narrow-angle, pre- and

post-firing pictures of the area fAy3 in Fig. IV-20). A com-
parison of Figs. IV-25 and IV-26 indicates that the firing
caused a number of changes, including movement of the

alpha-scattering instrument sensor head, movements of

rock and soil fragments, and alteration to general surface
features. In Figs. IV-27 and IV-28, some of the features

have been identified to clarify the following discussion.
Representative rock and soil fragments that were not

moved by the firing have been outlined; i.e., they are iden-
tified in both mosaics. Some of these fragments are labeled

with the same lower-case letters in both figures, since they
are discussed in the text. Fragments that were moved dur-

ing the firing are marked with an "x"; some are numbered

so that they also can be discussed in the text.

None of the fragments that moved can be positively
identified in both the pre- and post-firing mosaics. In some

cases, this could be due to movement of particles into the

area from locations not in the pre-firing mosaic, or in
other cases, particles shown in the pre-firing mosaic could
have moved out of the area during the firing. It is also

possible that some of the same fragments appear, but, be-
cause of the movement and their irregular shape, they

present different distinguishing features to the camera
and, therefore, cannot be identified as the same fragment.

Examination of Figs. IV-25 and IV-26 indicates that in

places the basic soil surface has been changed by the firing.
Clear evidence of this is shown by noting the track of frag-
ment "h," indicated by the dotted line in Fig. IV-27. This

feature, which is about 2 mm in depth, appears in the pre-
firing picture; fragment "h," probably ejected during the

landing, made the track as it rolled downhill. Because the
track is essentially straight for its entire 58-cm length, its

direction probably defines the local direction of maximum
slope. As can be seen in Fig. IV-28, this track no longer

exists, having either been filled in or eroded away by the
firing. Another example is the material to the right of the
helium tank, which is ejected material deposited during

the landing. This material, which is in an area 40 to 60 cm
from vernier engine 3, is not visible after the firing. Al-

though the ejecta could have been covered, or swept away
by the firing, evidence suggests the latter (see area E in

Fig. IV-27, which is adjacent to the helium tank and rock
"a"). It can be concluded that some soil around fragment
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I

Fig. IV-21. A series of narrow-angle mosaics of the lunar

surface beneath vernier engine 3, as seen through the

auxiliary mirror. The series included two pre-firing (a

and b) and four post-firing pictures. Sun elevation rela-

tive to the local surface was 35, 45, 47, 39, 16, and 11

deg (a through f, respectively). Part of the spacecraft

frame and one crushable block are visible at the top of

the picture.

Fig. IV-22. A series of narrow-angle mosaics of the lunar

surface beneath vernier engine 3. The series includes two

pre-firing (a and b) and four post-firing pictures. Sun

elevation relative to the local surface was 33, 44, 40, 31,

20, and 16 deg (a through f, respectively). Two space-

craft tanks and the electronics box on the bottom bound

the pictures. A spacecraft structural member divides the

visible lunar surface.





Fig. IV-23. Early pre-fi.ring, wide-angle, digitized picture of large auxiliary mirror. A crater rim {?) is faintly high-

lighted by the early morning sun in the upper-left corner of the mirror IDay 254, 08:26:08 GMT).
Fig. IV-24. A post-flring view of the only part of the vernier engine 1 imF

the television camera. The roug'h-textured lunar surface within the small

part of an erosion crater. This area was in shadow before the firing {Day 2





_act area that can be seen by

triangular area is probably

63, 11:47:05 GMT).

Fig. IV-25. Far left: pre-flring mosaic of alpha-scattering .._
instrument area (Day 255; Catalog 5-MP-24).

Fig. IV-26. Middle left: post-firing mosaic of alpha-
scattering instrument area (Day 257; Catalog 5-MP-25). _

Fig. IV-27. Middle right: pre-firing, annotated mosaic of

alpha-scattering instrument area. Rock and soil frag-

ments that were not moved by the firing are outlined;"_

fragments that were moved are marked with an "x"

(Day 255).

Fig. IV-28. Far right: post-firing, annotated mosaic of

alpha-scattering instrument area. Annotations are the "_

same as in Fig. IV-27 (Day 257).
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Fig. IV-29. Lunar surface beside the helium tank isee

Figs. IV-27 and IV-28l. Soil erosion from around rock _a"

and the trail left by impact of fragment 26 were caused

by the firing.(a) Pre-firing picture; Catalog 5-MP-43. (b)

Post-firlng picture; Catalog 5-MP-44.
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"g" and partly covering rock "a" was definitely swept away

because rock "a" is exposed to a somewhat greater depth
after the firing (Fig. IV-29). For this area, 40 to 60 cm from

vernier engine 3, the estimated depth of deposition, ero-
sion, or soil replacement is 1 cm or more.

Fragments "a" through "f" did not move, and therefore

appear in both Figs. IV-27 and IV-28. In general, these are
the larger fragments; many, if not most, appear to be partly

buried. Fragment "g," probably a small rock, did not move;
it is located beside the large rock "a," which may have

shielded it from the vernier engine firing.

Studies of the pre-firing mosaic (Fig. IV-27) indicated
that the largest fragment in the mosaic displaced during

the firing was fragment 1,which had an average diameter
of about 2.6 cm and was initially located about 35 cm from

vernier engine 3. Table IV-2 lists the average diameters
and distances from engine 3 for a number of the larger

displaced fragments that appear in this mosaic.

Studies of the post-firing mosaic (Fig. IV-28) indicated

that fragment 25, having an average diameter of 4.4 cm,
was the largest fragment in the mosaic displaced by the
firing. In all probability, because of its size, the pre-firing

position of this rock was much closer to the vernier engine,
and therefore did not appear in the pre-firing picture. It

is interesting to note in Figs. IV-28 and IV-29b that frag-
ment 26, 4.3 cm long, was ejected by the firing and pro-

duced a skid mark about 4 to 5 cm long.

Figure IV-30 is a plot of fragment diameter vs pre-firing
distance from vernier engine 3. The fragments that moved

are indicated by crosses; those that did not move are indi-

cated by circles. The circles plotted in this figure are for
fragments that probably were lying on the surface and not

partially buried prior to firing. Since fragments 25 and 27
appear only in the post-firing mosaics, their point of origin

is unknown. Therefore, only a probable range of distance
can be shown for these fragments. This figure indicates a

boundary below which a fragment could have been moved
by the firing and which depends on the size of the frag-

ment and its distance" from the vernier engine.

The alpha-scattering sensor head was displaced by the
vernier engine 3 firing. The alpha-scattering instrument's

13-cm-high compartment faces C and D (Fig. IV-28) were
oriented at approximately a 45-deg angle in the direction

of vernier engine 3. The firing displaced corner A to A', a
distance of 9 cm, in a direction approximately 60 deg from

downslope. The instrument rotated 15 deg counterclocko

wise (viewed from above) as corner B moved obliquely to
B'. A depression left in the soil by the straight edge of the
circular plate in its pre-firing position can be seen in

Fig. IV-31a and at the arrow beside corner A in Fig. IV-28.

In Fig: IV-31a (pre-firing), the image of the sensor head
circular plate is clearly reflected by the gold-plated front

of face D. After the firing (Fig. IV-31b), no reflected image
of the plate can be seen. The entire surface of D appears
to be nonreflective, with the bottom 3 cm appearing darker

than the top 10 cm. This change is probably caused by the
adherence of fine lunar material. Erosion debris covers the

intersection of face D and the plate. Fragments and soil

appear to have landed on and near the plate after the
sensor head was stopped when the leading edge of the

plate dug into the soil (Figs. IV-31b and IV-26).

Table IV-2o Diameters and distances from vernier engine 3 centerline, prior to firing, for representative

fragments near the alpha-scattering instrument, which have been displaced by the vernier firing

Distance from vernier Distance from vernier
Fragment Diameter, cm engine 3, cm Fragment Diameter_ cm engine 3_ cm

1

2

3

4

5

6

7

8

9

10

11

12

2.6

2.1

t.7

2.2

1.8

1.9

1.8

0.9

0.9

1.6

0.8

1.1

35

110

75

83

80

82

125

100

91

75

83

115

13

14

15

16

17

18

19

20

21

22

23

24

0.4

0.6

0.8

0.6

1.8

1.3

0.4

0.6

0.6

0.5

0.6

0.6

125

154

166

184

110

109

168

179

189

175

162

148
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Fig. IV-30. Graph of diameter vs distance for fragments moved by the firing. The dashed line represents the prob-

able maximum sizes for fragments that could be moved by the firing at distances ranging from 10 to 200 cm.
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Fig. IV°31° Gold-plated face D (see Figs. IV-27 and IV-28) of the sensor head. (a) Pre-firing picture; face D is highly

reflective (Day 255, 05:06:27 GMT). (a) Post-firing picture; face D is nonreflective (Day 257, 07:15:09 GMT).

Footpad 3 area. A fragment-by-fragment study of the

footpad 3 area in Fig. IV-32 (pre-firing) was made by com-

paring individual pre- and post-firing pictures using the

blink technique (a technique by which two frames are

placed in a superimposed position, and the top frame is

manually flipped for easy comparison of features). Fig-

ures IV-33 and IV-34 are post-firing mosaics of the foot-

pad 3 area. None of the numerous soil fragments outboard

of footpad 3 and between the antenna and its shadow in

Fig. IV-32 were displaced by the firing. However, this area

is at least partly shielded from the direct blast of vernier

engine 3 by footpad 3 and its leg. The soil visible below

the antenna in Fig. IV-32 is not shielded from vernier en-

gine 3, and many of the fragments here were swept away

by the firing. The area is 120 to 130 cm from the engine

centerline; the largest fragment displaced was 2.0 cm in
diameter.

Footpad 2 area. In either the pre- or post-firing mosaics

of the footpad 2 area, fragments that can be seen to have

moved are entirely limited to the lower-left quarter of the

contr_ed mosaics in Figs. IV-35 and IVo36. Most of the

displaced soil is limited to the area in the two frame rows

left of footpad 2 in front of the magnet. Soil was blown

off the magnet bracket and control bar.

Some of the representative larger fragments in the pre-

firing.mosaic that have moved are marked with an "x" and

numbered 1-11 in Fig. IV-35o Distances, parallel to the

ground, from vernier engines 2 and 3 for these fragments

are given in Table IV-3.

Though only a relatively few fragments of 1-cm diameter

or larger have been displaced, the fine soil between the

larger fragments in the area to the left of footpad 2 was

disturbed by the firing. This detail can be seen only in

Table IV-3o Diameters and distances from the centerline

of vernier engines 2 and 3, prior to firing, for

Fragment

1

2

3

4

5

6

7

8

9

10

11

fragments near footpad 2 which have

been moved by the vernier firing

Diameter, Distance from vernier Distance from vernier

cm engine 2, cm engine 3, cm

1.6

1.8

1

1

I

1

I

1

1

1

1

170

105

106

105

104

125

102

144

145

110

115

256

211

209

205

206

194

186

232

235

216

222
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Fig° IV-32. Pre-firing mosaic of footpad 3 area. Most of the fragments below the antenna in the lower-right corner
of the mosaic were swept away by the vernier engine firing (Day 255, Catalog 5-MP-32).
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Fig. IV-33. Post-firing mosaic of footpad 3 area. The small, light-colored fragments above the leg probably are small

rocks rather than soil clumps (Day 258, Catalog 5-MP-29).

Fig° IV-34. Post-firlng mosaic of footpad 3 area. A portion of the trench dug by footpad 3 during landing can be seen

below the shock absorber to the left of the footpad (Day 264; Catalog 5-MP-30).
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Fig. IV-35. Pre-firing mosaic of footpad 2 area. Representative fragments that were moved by the vernier engine

firing are marked with an "x" (Day 255).
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Fig. IV-36. Post-firing mosaic of footpad 2 area. Soil on top of the footpad was little disturbed by the firing (Day

256; Catalog 5-MP-27).

large prints of individual narrow-angle pictures. The rela-
tive influence of engines 2 and 3 in causing this erosion is
unknown.

Footpad 2 trench area. Only a portion of the trench dug
by footpad 2 is visible in narrow-angle pictures taken be-

fore vernier engine firing. That portion of the trench for
which both pre- and post-firing, narrow-angle pictures are
available is shown in the mosaics of Figs. IV-37 and IV-38.

Detailed frame-by-frame comparison of these pictures,
using the blink technique, showns no visible erosion. None

of the loose soil fragments comprising the landing ejecta
lying on the trench rim and floor have been moved. In ad-

dition, there has been little, if any, filling or removal of fine

soil along the numerous fractures and crevices in the
trench wall. Distance along the ground, from the center-
line of vernier engine 2 to the top of the trench in

Figs. IV-37 and IV-38 ranges from 90 cm at the south end
to 115 cm at the north end.

CoSoil deposits on electronic compartment tops. A meao

sure of erosion by diffused gas eruption was obtained by

comparing pre- and post-firing pictures of the comparto
ment B top (Fig. IV-39). In Fig. IV-39b, clumps of soil,
which landed on the compartment top and broke, are

visible. Some of the small fragments appear to have rolled
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Fig. IV-37. Pre-firing mosaic of part of the trench dug by footpad 2 during landing (Day 256; Catalog 5-MP-36).

downslope or splattered in the plane of the trajectory. The

relationship of compartment B to vernier engine 1 is shown

in Fig. IV-20; the top of the compartment was 1.1 m above
the lunar surface. The particles must have had a near-
vertical trajectory in reaching the top of compartment B

from the area under vernier engine 1. There were no notice-
able changes in spacecraft temperatures, although the

thermal characteristics of the electronic compartment top
would have been significantly modified even by a thin layer
of soil.

4. Simulations and Analysis

a. Simulations. In order to perform an analysis of a simu-

lated erosion, the following factors had to be determined.

Height of the engine 3 nozzle above the lunar surface.
The nozzle height was determined by comparison of pic-
tures obtained before launch and on the lunar surface.

Before launch, but after final Surveyor V camera align-

ment, pictures were taken of the region below vernier en-
gine 3 and crushable block 3, as viewed by the auxiliary

mirrors. A platform was positioned at various known dis-
tances below the spacecraft (equivalent to the spacecraft

resting on its footpads with zero penetration; Fig. IV-40).
A square grid with lines at 5.1-cm centers was painted on

this platform along with circles showing the relative loca-
tion of the areas below the nozzle and the crushable block;

a vertical distance scale, as measured on these pictures at

the centerline of the engine nozzle, was thus established.
With this scale, the distance from the vernier engine 3

nozzle exit plane to the lunar erosion crater was deter-

mined to be 37 ± 1 cm. The location of the lunar erosion

crater under engine 3 was determined by a comparison of

lunar pictures (Figs. IV-21 and IV-22) with pictures ob-
tained of a simulated crater by use of a full-size spacecraft.

Lunar erosion crater dimensions. By use of the technique

described above, the crater diameter was determined to be

20 cm. Estimates of crater depth were determined by
shadow studies, conducted with a full-scale spacecraft and
a simulated sun, which was adjusted to the correct azimuth

and elevation angles relative to the spacecraft. Depres-

sions of various depths were made in simulated soil sur-
faces. By comparing the crater shadows on the lunar

pictures with those obtained in laboratory simulations, the
average crater depth was determined to be 0.8 -+-0.2 cm.

Estimates of the crater dimensions were also made

by the use of photogrammetry by the Mapping Science
Branch of the Lunar and Earth Science Division of the

Manned Spacecraft Center. The results (Fig. IV-41) indi-
cate that the crater had a diameter of 20 cm and a maxi-

mum depth of 1.3 cm.

Slope of the erosion crater relative to the engine nozzle.

The full-scale laboratory spacecraft was oriented such that
the simulated sun elevation and azimuth angles were the

same as for the Surveyor V spacecraft. A horizontal plat-
form was placed below the spacecraft corresponding to

the nozzle height of 37 cm. Comparison showed the
shadows on this platform, as observed through the tele-
vision camera system, were in substantial agreement with
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Fig° IV°38. Post-firing mosaic of the same portion of footpad 2 trench seen in the pre-firing mosaic (Fig. IV-37). No

disturbance was caused by the firing of vernier engine 2, which was approximately 1 m away (Day 258).
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(a)

Fig. IV-39. Top of compartment B taken before and after the firing. A lump of material was transported to the com-

partment top and splattered in a direction away from vernier engine 1. (a| Day 255, 02:29:29 GMT. (b) Day 265,
05:48:58 GMT.

those taken on the lunar surface. The platform was tilted
at various angles, and comparisons were made. It was

noted that, when the sun angle was such that a good shad-
ow pattern existed below the nozzle, tilting the platform

produced only small changes in the shadow pattern. Con-
sequently, precise measurement of the relative surface

slope below the nozzle was not possible. Estimate of the
slope, relative to the engine nozzle exit plane, is 0 to 10
deg down toward the alpha-scattering sensor head.

Erosion crater orientation. The axis of the crescent-

shaped erosion crater makes an angle of 30 deg with the

+X axis (measured towards the -Y axis) of the space-

craft. That is, the points or cusps of the crescent point in
the general direction of the sensor head. Because the
spacecraft is sitting in a crater only three times its own
diameter, the lunar surface beneath the spacecraft should

be gently curved relative to the spacecraft X-Y plane.
Therefore, the lunar surface beneath both vernier en-

gines 2 and 3 should slope toward the Y axis of the space-
craft at approximately the location of the alpha-scattering

instrument. This gentle slope of the lunar surface relative
to the spacecraft probably caused differential erosion by
each vernier engine. Such differential erosion could ac-

count in part for the orientation and crescent shape of the
erosion crater.

b. Viscous erosion. The viscous erosion studies here and

the diffused gas studies in the next part of this section make
use of the theoretical flow field along the lunar surface and
the associated surface loadings, as determined using

Roberts' theory (Ref. IV-5).

Table IV-4 lists the engine parameters used in the calcu-
lations, and Figs. IV-42 through IV-44 show the theoretical

predictions. Figure IV-42 shows the theoretical surface
pressure, gas radial velocity, and the corresponding dy-

namic pressure [equal to (_)pu 2, where p is the gas mass
density and u is the gas radial velocity along the surface]

associated with this radial velocity over a range of dis-
tances measured from a point directly below the engine

(the stagnation point) for the Surveyor V vernier engine 3.
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Fig. IV-40. Narrow-angle picture taken by the Surveyor V television camera system prior to launch.
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Table IV-4. Estimated vernier engine 3 data

(used in calculations)

Nozzle height .................................. 39.4 cm (15.5 in.)

Thrust ........................................... 120 N (27 Ib)

Chamber pressure ........................... 46°9 N/cm 2 (68 psla)

Chamber gas temperature ........................ 2950°K (5300011)

Chamber gas viscosity ....... 5.6 X 10 -4 poise (1.17 X I0 -e Ib-sec/fr °)

Gas specific heat ........................................ 1.313

Gas constant ...................... 367 m=/sec2OK (2190 fr_/sec2OR)

Nozzle exit radius ............................ 6.46 cm (0.2121 ft)

Nozzle exit math number ................................... 5.2

These data correspond to conditions where the engine is

exhausting onto a fiat plane parallel with the nozzle exit

plane. The figure indicates that surface pressure drops off

rapidly with radial distance. Figure IV-44 again shows the

dynamic pressure for surfaces tilted 0, 10, and 20 deg from

the nozzle exit plane. For example, Fig. IV-44 indicates

that, at a radial distance of 76 cm (about the distance from

vernier engine 3 to the alpha-scattering instrument experi-

mental package), the theoretical dynamic pressures are

about 14, 76, and 210 dynes/cm _ on surfaces tilted 0, 10,

and 20 deg, respectively, relative to the nozzle exit plane.

Roberts' theory (Ref. IV-5) was also used to estimate the

theoretical amount of viscous erosion for a range of soil

cohesion for four particle sizes, for the engine conditions

listed in Table IV-4 and the associated surface loadings

shown in Figs. IV-42 through IV-44. The results of these

computations are shown in Fig. IV-45. In these calcula-

tions, the aerodynamic friction and drag eoefllcients acting

on the soil particles were taken to be 0.3 and 2, respec-

tively. The soil internal friction angle was taken to be

35 deg.

According to Fig. IV-45, a soil composed of 100-_-

diameter particles and a cohesion of 1430 dynes/cm 2

would erode at a maximum rate of 0.36 cm/sec. Thus, for

an engine firing time of 0.55 sec, the maximum erosion

depth should be 0.2 cm (0.079 in.). If the soil particle di-

ameter were 10_ and had the same cohesion, the resulting

erosion rate would be 0.061 cm/sec and, for the 0.55 sec,

should produce a maximum erosion depth of 0.024 cm.
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Fig. IV-42. Theoretical static pressure, dynamic pressure_

and exhaust gas radial velocity at the surface of a plane,

parallel to the engine nozzle exit plane; engine thrust =

120 N, nozzle height = 39.4 cm.

Theoretically, then, according to Fig. IV-45, the amount

of erosion observed under vernier engine 3 (a depth of

about 1 cm) could have occurred by viscous action only

on a soil composed of particles larger than 500_. Since

Fig. IV-41. Plan view and profiles of the crescent-shaped crater produced by the

4l-vernier engine 3 firing (taken from a drawing by the Mapping Science Branch,

Lunar and Earth Science Division, Manned Spacecraft Center).
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estimates of the lunar soil particle size indicate that the

major proportion of grains present are smaller than 500tz,

the comparison of theoretical and observed crater depths

suggests that viscous erosion was not the major erosion

mechanism for the removal of fine-grained material. Ad-

ditional evidence that such is the case is suggested by a

comparison of theoretical and observed crater diameters.

The erosion crater was computed according to Roberts'

theory for a soil composed of 600-/z-diameter particles" and

with a cohesion of 960 dynes/era 2 (selected to approximate

the observed average erosion rate). The results of these

calculations are shown in Fig. IV-46. The figure indicates

the crater diameter should have been 66 era, whereas the

observed crater diameter was about 20 cm. Thus, here

again, evidenee suggests that viscous erosion was not the

major erosion in forming the crater.

c. Gaseous diffusion erosion. The results presented here

were attained by use of the surface pressure obtained

from Roberts' theory (Fig. IV-47) for a jet firing normally

onto a horizontal surface of a homogenous, is0tropic,

porous medium. It should be noted that the diffusion

process is essentially independent of the direction of

gravity and that the diffusion-caused soil erosion on a

slope of 20 deg, calculated from the diffusion theory, is

hardly distinguishable from that on a horizontal surface.

Results of diffusion calculations (by use of equations

in Ref. IV-6) indicate that a diffusion-caused eruption

crater, 32 em in diameter and 3.5 cm in depth, would

have been formed in a completely cohesionless and very

permeable soil, (i.e., one in which steady-state gas flow

conditions were reached by an 0.5-sec firing) for surface

loading conditions corresponding to the Surveyor V test.

However, for the same test conditions, but in a cohesion-

less and less permeable soil (requiring 5 sec to reach

steady-state gas flow), the eruption crater would have

been 18 cm in diameter and 1.5 cm in depth.

Diffusion theory indicates that the diameter of the

diffusion-caused erosion crater is almost independent of

the cohesion. Thus, by comparing the calculated crater

diameter with the actual crater diameter formed during
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the experiment, it is possible to conclude that the experi-

ment was performed on a relatively impermeable soil.

By assuming that the soil porosity is between 0.3 and 0.5,

the viscosity of the vernier exhaust gases in the soil is

1 3< 10 -4 poises and 3 )< 10 -_ poises (Ref° IV-12), and that

an 0.5-sec firing is equivalent to about one-tenth the time

required to reach steady-state conditions, the permea-

bility of the soil medium is calculated to be between

1 X 10 -8 and 7 × 10 -s cm 2. For comparison, consider the

permeabilities of soils of different uniform grain sizes as

measured on earth and shown in Fig. IV-48. This figure

shows that the permeability range for the lunar surface

material (down to a depth of around 25 cm) fits into the

permeability range of silts having grain sizes between

2 and 60_. The lunar material, of course, contains par-

ticles larger and possibly some smaller than thi_ range.

However, the estimated lunar permeability indicates most

of the particles are in the 2 to 60-/_ size range. This esti-

mate is also in agreement with conclusions reached from

simulations of footpad imprints from Surveyor III

(Ref. IV-2).

500

_I I00
I0

I
0 IXlO 3

I
2XIO 3

SOIL COHESION, dynes/cm 2

Fig. IV-45. Theoretical viscous erosion rates as functions

of soil cohesion and particle size; engine thrust = 120 N,

nozzle height = 39.4 cm.
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Fig. IV-46. Theoretical viscous erosion crater profile for

an arbitrarily chosen set of soil parameters selected to

match the observed erosion depth. The actual lunar soil

has smaller particle diameters. These results indicate that

the lunar erosion crater was not produced by viscous

erosion. Engine thrust ----120 N, nozzle height -- 39.4 cm.
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Diffusion theory indicates that soil cohesion (and per-

meability) has a strong influence on crater depth, but that
the frictional resistance has little influence on crater depth.

This is because the soil elements are made potentially un-

stable and erodible by the upward flow of gases which
essentially cancels the gravitational forces between soil

grains, resulting in negligible interparticle frictional forces.
I£ the lunar soil has the permeability indicated, then the

gases flowing into and through the soil during an 0.5-sec
Surveyor V firing would not have produced surface ero-

84

sion. If the firing time had been increased, or the soil per-

meability were different, so that diffusion erosion did occur
before engine shutdown, then the crater from this erosion
would have formed at a distance of about 19 to 25 cm

from the stagnation point. Since the erosion crater on the
moon has only a 10-cm radius, it is concluded that it was

formed by diffused-gas eruption. Possibly a dish-shaped
depression was first formed due to the shutoff eruption;

but, since some of the materials erupted in trajectories
nearly normal to the local surface, the downslope portion
of the dish could be covered by materials that moved

downslope as they fell back onto the surface. In the
absence of good, simulated vernier firing tests, it is diffi-

cult to calculate the effect of a slight amount of cohesion
on influencing the depth of erosion.

d. Differences of theoretical predictions and experi-

mental findings. In the preceding sections, comparisons
were made of the observed lunar erosion crater under

vernier engine 3 with theoretical craters formed by gas
viscous forces and diffused gas forces. The theoretical

predictions were not in complete agreement with ob-
served results, i.e., the observed crater shape is not what

would be predicted by theory. In addition, theory does

not predict that soil would be eroded at the large dis-
tances observed.
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The theories predict an axisymmetric crater, whereas,

the observed crater was crescent-shaped. It is surmised

that the lunar crater shape could have been caused by

one or several of the following factors:

(1) Flow of gases out of the nozzle may not have been

symmetrical.

(2) Material that blew upward could have settled

unevenly because of the surface slope.

(3) Lunar surface below the nozzle may have been

nonhomogeneous, had an irregular shape, and have

been tilted relative to the nozzle exitplane.

These theories also would not have predicted the move-

ment of fine soils that occurred as far as a meter from

vernier engine 3. However, neither theory makes any

attempt to explain the soil motions after the soil particles

leave the crater. It is surmised that this erosion of fine

soils did occur by a viscous erosion mechanism and/or

by the impact of material ejected from under the engine.

Both theories of soil cratering used the axisymmetric

surface loading predicted by Roberts' theory when the

nozzle exit plane is parallel with the surface. However,

tests made on earth indicate that the engine exhaust gases

can deviate substantially from perfect symmetry and

thereby produce a nonsymmetric surface loading.

Another basic assumption in the theory is that the lunar

soil is uniform and the surface is a fiat plane. Instead, the

lunar surface is an undulating, irregular surface with a

top layer that is more porous and less dense than the

soil that is centimeters below the top (Ref. IV-2). These

conditions would strongly influence both theories.

5, Implications of Movement of AlPha-Scattering

Instrument by Vernier Engine Firing

Several calculations, based on the observed effects of

the vernier engine firing in moving the alpha-scattering

instrument, provide information on the resistance of the

lunar soil to the motion of the alpha-scattering instru-

ment sensor head.

The alpha-scattering instrument, located at a distance

(nearest comer) of 68 cm from vernier engine 3 (the

nearest Surveyor vernier engine), was moved downslope

during the firing so that its distance from the engine

became 77 cm. The spacecraft is assumed, for calculation

purposes, to be resting on a slope of about 20 deg to the

horizontal, dipping downward in a direction parallel to

the spacecraft's -Y axis.

a. Soil resistance from static considerations. Pressure

may be developed both from the engine gas pressure and

momentum exchange from soil particles impinging on

the alpha-scattering instrument. However, on Surveyor V,

pressure on the instrument during firing was not great

enough to overturn it. Bounds on this pressure, p, can be -

calculated from Fig. IV-49. Assume that the pressure is

equally distributed over one face of the instrument, hav-

ing an area'of 225 cmL The center of this face is 7.9 cm

from the lunar surface, a vertical line through the center

of gravity is 11.1 cm from the circular plate edge furthest

from this face, and the mass of the alpha-scattering instru-

ment is 2.2 kg. Equating the torques arising from pressure

and from weight, the applied force at which the alpha-

scattering instrument would start to overturn is 6.5 X 10 _

dynes, and the corresponding pressure on the face is

2.4 ×" 10 :_ dynes/cmL This sets an upper bound for p.

Because the sensor head moved during the firing, it fol-

lows that the pressure acting on it was sufficient to over-

come the frictional resistance on the base of the apparatus.

If it is assumed that there was no adhesion between the

alpha-scattering instrument and the lunar surface, which

seems reasonable from the pictures taken after the move-

inent (Fig. IV-28), a friction coefficient, _, can be as-

sumed to act between the alpha-scattering instrument and

the soil. Referring to Fig. IV-49, a balance of forces

parallel to the slope gives a pressure not exceeding (1.65_

-- 0.59) × 10 '_ dynes/cm 2. This is a lower bound for p.

Since the lower bound must be less than the upper bound,

the maximum possible value for the coefficient of friction,

_,,,,,.,., is 1.84. As the far side of the circular plate appears

to have dug into the lunar surface during the sliding, it is

probably more satisfactory to derive, not a value of _,

since the resistance was not all frictional, but a soil resist-

ing force, which then would have a maximum value of

P

sin _ e_Z;;::::::_

W:24 N

Fig. IV-49. Balance of forces on the alpha-scattering in-

strument sensor head during the vernier engine firing°
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6.9 X l0 s dynes. This analysis neglects any small forces
on the alpha-scattering instrument that may arise from
the attached nylon cord and electrical cable.

b. Soil resistance from dynamic considerations (equa-

tion of motion). The equation of motion for the alpha-
scattering instrument during vernier engine firing is

established on the basis that the acting force is constant
during the period of firing, and that the resisting force

has a constant magnitude at all stages during the m6tion.
The equation follows:

= g sin 0 + (P - F_......_) (1)
m

where

x ----distance parallel to the surface

g = lunar gravitational constant

_9= tilt angle

P = force on alpha-scattering instrument from vernier

engine firing

F = resisting force of soil

m = mass of sensor head

The initial conditions are k = 0, x=O, taking the

x-coordinate downslope. Integrating twice and substitut-
ing for t, a firing duration of 0.5 sec (which allows a short
time for pressure buildup in the vernier engine firing)

gives the velocity and displacement reached by the end
of vernier fire as

xe = g sin 0 + 2

After firing stops, we take a new t and x beginning at
the end of firing. The equation of motion is now

F
x = gsin 0 -- -- (4)

m

with initial conditions x = xe and x = 0. Integration twice

gives

x= gsin0 m t-}-Xe (5)

F\ t zx = gsin 0 m) _ + xet (6)

The alpha-scattering instrument comes to rest when
x--0, at time t,, so thaL from Eq. (5)

(g sin o - F) t'' = -jc_ = -gsin O + (P-F)0"5m (7)

Equation (7) then gives a relation among P, F, and t,,, the
time between cessation of firing and the time when

the alpha-scattering instrument stops moving. However,
the total distance moved by the sensor head is estimated

at 11 cm from Figs. IV-27 and IV-28; this can be equated
to the sum of the displacements given by Eqs. (3) and (6)

p - F (o.5)-' F t_
gsin0+ m 2 +gsin0----m2+Xet0=ll

(8)

Equation (8) gives a second relation among values of
P, F, and to.

Since more observational requirements are met by the
solution of Eqs. (7) and (8), they are more restrictive

than the general limiting analyses given previously. Con-
sequently, the upper limit of P can be used in Eqs. (7)

and (8) and they determine an upper' bound on F of
5.2 × 10 '_ dynes. This corresponds to an upper limit of
frictional coefficient of 1.38, if the frictional mechanism

is assumed. The lowest value of F which will satisfy
Eqs. (7) and (8) is F = 2.2 X 10 '_ dynes at to = 0.6 sec.

The value of P corresponding to this value of F is
1.8 X 10 '_ dynes. It follows, therefore, that an absolute
lower bound on the effective coefficient of friction is

= 0.59, and on the value of pressure represented by

P is 8.1 X 103 dynes/cmL Therefore, from this analysis,
the following tabulation can be compiled:

Bound
Acting

force, P,

dynes

Acting

pressure,

P,
dynes/cm z

Resisting
force,

F, dynes

Effective

coeffi-
cient of

friction,/L

Upper 6.5 X l0 s 2.4 × 103 5.2 × 10_ 1.38

Lower 1.8 × 10_ 8.1 × 10 z 2.2 X 10_ 0.59

It may be remarked that it does not seem reasonable that
the duration of sliding of the alpha-scattering instrument,

to, after vernier engine shutdown, could be as long as
the 0.6 sec required by the lower-bound case. If it is

assumed that the sliding duration would be less than the
firing duration, and the observation is made that the far

edge of the alpha-scattering instrument is dug into the
lunar surface, suggesting some tendency to overturning,
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more reasonable values of to such as 0.3 or 0.4 sec might

be taken. For these values, solution of Eqs. (7) and (8)

gives

Duration of

sliding after P, dynes P' F, dynes
vernier shut- dynes/cm 2

down, see

0.3

0.4

2.0×103 4.1×100 1.10

1.4×103 3.1×105 0.84

The angle of internal friction, indicated by the surface
sampler tests on Surveyor Ill, was about 37 deg. The

tangent of this angle (friction coefficient) is 0.75, so that
either of the last two values in the table, t_ = 0.84 or 1.10,

would be compatible with the Surveyor !II results plus
some small amount of cohesion. If there were no plowing,

the _ determined should therefore be a lower bound for
the soil coefficient. It is likely, however, that the effect

of plowing increases the effective value of tz.

c. Movements of particles by vernier exhaust. A calcu-
lation has been made of the size of soil or rock fragments,

at a distance of approximately 80 cm from vernier en-
gine 3, that would be expected to slide downslope under

the pressure p, and with the friction coefficient _, shown
previously. This indicates th_tt the pressure was sufficient
to cause the motion of the particles noted in Figs. IV-27
and IV-28 and also the motion of appreciably larger

particles.

E Conclusions and Summary

(1) During landing, Surveyor V slid about 0.8 m down
the inner slope of a 9- × 12-m crater. During this
sliding, at least two of the footpads dug trenches
in the lunar surface material. The initial depth of

penetration for one footpad was about 12 cm. Ejecta
was thrown 80 cm or more.

(2) Soil pressure developed in resisting the footpad

sliding during the landing was about 0.9 N/cm z,
which agrees with the stalling pressure during

°

trenching with the soil mechanics surface sampler
on Surveyor IlL

(3) Minimum effective coefficient of friction (braking)

between the footpads and the surface is 0.36.

(4) Best agreement obtained for a compressible soil
model with the observed Surveyor V footpad pene-

trations and landing leg loads is for a soil static-
bearing capability of 2.7 N/cm 2 and a density of

1.1 g/cm 3. Incompressible soil model analyses have
not yet been performed for Surveyor V. Prelimi-
nary analyses indicate that soil at the Surveyor V

landing site is weaker than at previous Surveyor

landing sites.

(5) Surface material is granular, slightly cohesive, and
generally fine-grained, as at the Surveyor I and Ill
landing sites. However, the differences in reflec-

tivity between disturbed and undisturbed lunar soil
is less than at the Surveyor I and III landing sites.

(6) During the 0.5-sec vernier engine firing, soil and
fragments to undetermined depths were removed

by viscous erosion from areas below and adjacent
to at least one vernier engine. Soil or rock frag-
ments moved included large fragments up to 4.4 cm

in diameter, which were close to the vernier engine,
and small fragments up to 0.6 cm in diameter at

distances up to 1.9 m. At engine shutdown, exhaust
gas which had diffused into the soil erupted, pro-

ducing a crater 20 cm in diameter and 0.8 to 1.3 cm
deep under one engine."

(7) Permeability of this lunar soil, to a depth of 25 cm
or so, is 1 )< 10 -s to 7 X 1O-s cm z. This corresponds

to the permeability of earth silts and indicates most
of the lunar particles are in 2- to 60-/z size range.

(8) Capability Of lunar material to adhere to a smooth

vertical surface is indicated by the change of reflec-
tivity of the alpha-scattering sensor head as a result

of the vernier engine firing.

(9) Vernier engine firing did not cause any degradation
in the functional capability of the spacecraft.
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V. Lunar Surface Temperatures and Thermal Characteristics

J. W. Lucas, R. R. Garipay, W. A. Hagemeyer, Jo M. Saari,

J. Smith, and G. Vitkus

Another opportunity to obtain spacecraft thermal per-
formance data on the lunar surface was provided by

Surveyor V, which landed on Day 254 (September 11,
1967), at 00:46:44 GMT; the sun was approximately 17

deg above the horizon. Surveyor V was interrogated dur-
ing the first lunar day until Day 272 (September 29) at
06:37 GMT or about 115 hr after sunset; interrogation on

Surveyor I terminated 48 hr after sunset, and on

Surveyor Ill 2 hr after sunset° Thus, Surveyor V provided
the most extended lunar night performance data° On

Day 288 (October 15), the spacecraft was reactivated for
the second lunar day; on that day, the sun was rising at

the landing site and was approximately 75 deg above the
local horizon. On Day 291 (October 18), between 07:58

and 12:59 GMT, a lunar eclipse occurred; excellent tem-

perature readings were obtained. Data received to sunset
of the second lunar day are presented here; data received

until 12:15 GMT on Day 305 (November 1) into the lunar
night will be reported at a later date.

Following the Surveyor r __rldIII analyses (Refs° V-1 and
V-2), outboard-face temperatures of compartments A and

B were used to derive average brightness temperatures
of the lunar surface. Calculated temperatures during the

night and during the eclipse were used to estimate the
thermal inertia, 3', of the lunar surface material.

A. Albedo, Lunar Surface Temperatures, and

Thermophysical Properties of Landing Site,

as Determined by Telescope

The total surface albedo for the landing site was deter°

mined to be 7.7_, and was derived by the same method
as for the Surveyor III landing site (Ref. V-l). The method

used to calculate total albedo depends on a telescopic

measurement made to a resolution of 10 sec of arc (18 km

at the center of the lunar disk). Thus, the local actual
ulbedo of the Surveyor V landing site may depart from

the predicted value because only a lunar disk of approxi-
mately 100-m diameter (with a spacecraft at the center)
is of interest.

The lunar surface temperatures during lunation depend
upon the lunar surface thermal inertia parameter, defined
as

y = (kpc)-Vz

where k is thermal conductivity, p is density, and c is

specific heat° For a 3' of 500, 800, and 1000 (in cgs units),
lunar surface brightness temperatures (Fig. V-l) for an

equatorial site were computed (Ref. V-3). (Note that only
after sunset is it possible to distinguish the thermal inertia

parameter of lunar surface material for 3' > 500.)
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Fig. V-2. Earth-based lambertian temperatures for Surveyor V landing site, assuming level lunar surface.
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The calculated lambertian temperatures for the

Surveyor V landing site are shown in Fig. V-2. A total

solar albedo of' 7.7_ and a value of 2 cal/cm2-min for

solar isolation were used in calculations. The calculated

lambertian lunar surface temperatures during the sunlit

portion of the lunation are in agreement with those shown

in Fig. V-l.

Infrared measurements made during the December 19,

1964, eclipse showed that the lunar surface exhibits a

great deal of thermal inhomogeneity (Refs. V-4 and V-5).

The isothermal contours of the Surveyor V landing site

obtained during total eclipse are shown in Fig. V-3. The

region appears to be relatively bland when observed from

earth with a resolution of 18 km. It is expected that tem-

perature fluctuations could exist to a scale comparable

to that of the Surveyor V landing site; thus, it is possible

that the thermal characteristics of the site are considerably

different than they appear as observed from earth.

Figure V-4 is a predicted eclipse cooling curve for the

site, based on measurements obtained by Saari and

Shorthill (Refs. V-4 and V-5) during the December 1964

eclipse. The warming portion of the curve represents cal-

culated equilibrium surface temperatures corresponding

to the insolation at eaeh time. By using the theoretical
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eclipse cooling curves for a homogeneous model (Ref.

V-5), a _/of 1350 is obtained for the lunar surface material.

B° Spacecraft View of Lunar Surface

Surveyor V landed in a small (9 X 12 m) crater, with

leg 1 positioned near the crater rim and legs 2 and 3

downslope on the southwest wall of the crater. (For de-

tails of the landing site, see Fig. III-3 of Section III.)

At approximately sunset of the first lunar day, the shock

absorbers on legs 2 and 3 compressed, placing the space-

craft even more downslope. Figure V-5 shows the as-

sumed orientation of Surveyor V with respect to the lunar

coordinates after landing, and after sunset of the first

lunar day. During the second lunar day, the spacecraft

positioned itself to the orientation it had during the first

lunar day.

The location of the spacecraft within the crater profile

is shown in Fig. V-6. Compartment A primarily views the

east side of the crater, the surface above the crater, and

space. The overall view factor from compartment A to

LOCAL
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SURFACE'--_ _ 8/ a 76
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COMPARTMENT B -/ _ / I \ _ "/

/ j .x,s
/ J¢ "---COMPARTMENT A
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SUNSET

I1.0

25.0

24.5

Fig. V-5. Surveyor V landed orientation.

the lunar surface is 0.247, of which 0.163 is to the crater

wall; the remaining view factor of 0.084 is to the surface

above the crater rim. Compartment B views the west side

of the crater, the surface above the crater rim, and space.

The overall view factor from compartment B to the lunar

surface is 0.255; the view factor to the crater wall is 0.153;

the view factor above the crater wall is 0.102. Spacecraft

positioning after sunset had very little effect on the overall

view factor for either compartment.

C. Spacecraft Raw Data

1. Spacecraft Description

Surveyor V is similar in structural and thermal designs

to Surveyors I and IIL The basic frame (Fig. V-7) is tubu-

lar aluminum, which serves as a tetrahedral mounting

structure for the electronic gear and propulsion systems.

The three spacecraft legs are attached at the three corners

of the base. The planar array antenna and solar panel,

mounted on a mast approximately 1 m above the struc-

ture's apex, cast varying shadow patterns on the space°

craft and on the lunar surface throughout the lunar day°
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Changes in shadow patterns occur as a result of the repo-

sitioning of the planar array antenna and solar panel and
from the normal (0.5-deg/hr) movement of the sun.

The thermal finish of the structural members is a com-

bination of inorganic white paint, applied to all top and
visible side surfaces, and polished aluminum (Ref. V-2);

the underside of the surface is polished metal. This ther-
mal finish distribution provides a low-solar-absorptance,

white-paint surface in the sun-illuminated areas, with a
high-emittance coupling to space in the infrared regions.

The polished-aluminum underside isolates the spacecraft
from the hot lunar surface.

a. Compartment canisters. Compartments A and B
house spacecraft batteries and electronics. Most of the
top surface of each compartment is covered with Vycor

glass, second-surface mirrors. These mirrors are part of
the bimetallic-actuated thermal switches used to reject

heat from temperature-controlled compartments. The out-
board faces of the compartments look away from the
spacecraft and are made of 0.4-mm-thick aluminum

panel. Their purpose is to contain a blanket of super-

insulation that surrounds each compartment. A tempera-
ture sensor is bonded to the polished-aluminum inner
surface of the outboard face (i.e., the surface facing the

superinsulation) of each compartment.
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The outboard faces are insulated from the rest of the

compartment and spacecraft structure. They are, there-
fore, essentially in thermal equilibrium with their environ-
ment, which is composed of the lunar surface, space, and

solar energy input. The superinsulation isolates the sur-
faces from the inside of the compartment so that heat

input from that boundary is negligible during the lunar
day. This assumption is not valid when calculating lunar

surface temperatures during a lunar eclipse or during the
lunar night.

Parameters needed to compute lunar temperature by
the methods described in this report are:

(1) Angle between normal to compartment outboard

face and spacecraft -Z axis.

(a) Compartment A: 69o30 '.

(b) Compartment B: 69o58 '.

(2) Compartment outboard-face properties before
launch.

(a) Infrared hemispherical emittance: _u =0.87
±0.02.

(b) Solar normal absorptance: a, = 0.20 ±0.02.

(c) Material: 2024 aluminum, 0.4-ram-thick panel

with corrugations, coated with inorganic white

paint.

The first and second lunar day outboard-face tempera-

tures of compartments A and B are presented in Figs. V-8

and V-9, respectively. On Day 256 (September 13), at
05:38 GMT, the vernier engines were fired. Note that,
after the firing, no irregularities in the temperature data

were observed. By superimposing the first-day tempera-
ture data over the second-day temperature data (Figs.

V-10 and V-11), it is apparent that outboard-face tern*
peratures run higher during the second day, especially
when the sun shines on them. It is believed that the temo

perature increase may be caused by deterioration of the

inorganic white paint, causing the solar absorptance to
increase.
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Good temperature data were obtained on the lunar

eclipse during the second lunar day (Fig. V-12). The
angle between a normal to the compartment outboard

faces and the sun vector is presented in Fig. V-13. The
extent of shading by either the solar panel or planar array
antenna was negligible on the outboard faces of compart-
ments A and B.

b. Planar array antenna and solar panel. The planar

array antenna and solar panel are relatively low-heat-
capacity planar surfaces. Data derived from them may

be used to negate some of the uncertainties associated
with lunar surface temperatures based on data from the

compartment outer faces, especially for calculations dur-
ing the eclipse and lunar night. Temperature data for the

solar g anel and planar array antenna during the first
lunar day are given in Figs. V-14 and V-15. Figure V-.16
shows the solar panel and planar array antenna tempera-

ture data during the eclipse. The angles between the
normal to the solar panel and the sun vector, and to the
spacecraft -Z axis (for the first lunar day) are shown in

Fig. V-17. Figure V-18 shows the angles on the first lunar

day between the normal to the planar array antenna and
the sun vector, and to the spacecraft -Z axis.
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Fig. V-12. Temperatures of outboard faces of compart-

ments A and B during eclipse.

I00

The parameters needed to compute lunar surface tem-

peratures are:

(1) Solar panel properties.

(a) Surface area.

Front: 0.855 m 2.

Back: 0.855 m 2.

(b) Total heat capacity: 0.798 kg-cal/hr °C.

(c) Conductance (front to back): 50.3 kg-cal/hr °C.

(d) Solar normal absorptance.

Front surface: 0.76 -4-0.02.

Back surface: 0.30 ___0.02.

(e) Infrared hemispherical emittance.

Front surface: 0.80 ___0.02.

Back surface: 0.84 -+-0.02.

(f) Angle between normal to solar panel and space-
craft -Z axis.

First lunar night (Day 267): 99.64 deg.

Eclipse (Day 291): 90.0 deg.

(g) Angle between -X axis and projection of nor-
mal into X-Y plane (measured toward -Y axis).

First lunar night: 301.0 deg.

Eclipse: 211.2 deg.

(2) Planar array antenna properties.

(a) Surface area.

Front (projected): 0.97 m 2.

Back (total): 1.40 m _.

(b) Total heat capacity: 1.04 kg-cal/hr °C.

(c) Conductance (front to back): 16.8 kg-cal/hr °C.

(d) Solar normal absorptance: 0.80 ___0.02.

(e) Infrared hemispherical emittance: 0.88 ___0.02.

(f) Angle between normal to planar array antenna

and spacecraft -Z axis.

First lunar night: 25.5 deg.

Eclipse: 5.3 deg.

(g) Angle between -X axis and projection of nor-

mal into X-Y plane (measured toward -Y axis).

First lunar night: 301.0 deg.

Eclipse: 31.2 deg.
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c. Thermal instrumentation. Platinum resistance tem-

perature sensors provided temperature data of various

points in the spacecraft. Each sensor is calibrated indi-
vidually to ___1°C; other nominal-system inaccuraeies de-

grade the system to --3°C.

d. Lambertian lunar surface temperature calculations.

Calculations were performed using the following equa-
tion taken from Ref. V-I:

_T_ =
e2 (F_ -- F_) - F_ -- F_

O/la 8

- E__2(F_ - F_.) [(F,_ - F_.)0_sin 0 + cos/3]

- _ (1)
_1 _2 (F12 -- F13)

where

T_ = compartment surface temperature

Tz = lunar surface brightness temperature

T3 = lunar surface brightness temperature in shadow;

T_ < < T_ is assumed

S = solar irradiation constant = 1375 W/m _

F_2 = geometric view factor from i to 2

= 0.247 for compartment A

= 0.255 for compartment B

F_3 = geometric view factor from 1 to 3 (see Table V-l)

= conduction heat flux between inside and outside

of compartment wall

= 3.5 W/m 2

= Stefan-Boltzmann constant

= 5.675 X 10-8 W/m =°K4

• , = compartment surface emittance

= 0.87 ___0.02

E2 = lunar surface emittance

= 1.0

_,s = compartment surface solar absorptance

= 0.20 -+-0.02

/3 = angle between direction of sun and normal to

compartment surface (from Fig. V-13)

0 = sun angle (between lunar surface and direction of

sun)

p_ = 0.077 = lunar reflectivity to solar irradiation

Table V-1. View factor, Faa,from compartments A and B
to lunar surface in shadow

Sun angle From compartment A From compartment B

Negligible20

30

40

50

60

70

80 to 180

_f

Negligible

0.045

0.037

0.030

0.022

0.007

0.002

Negligible
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Fig. V-18. Angle that normal to planar array antenna makes with sun vector and --Z axis during first lunar day.
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2. Lunation

Figure V-19 represents a first-day average brightness

temperature, as calculated from compartment A and B

telemetered temperatures using Eq. (1). The crater wall

and the surface above the crater rim are at different tem-

peratures for a given sun angle. Since the compartment

outboard faces view the crater wall and the surface above,

the telemetered temperatures of compartments A and B

depend on these two different lunar surface temperatures.

Solution of Eq. (1) yields a single lunar surface tempera-

ture; thus, this temperature may be considered as an aver-

age lunar surface temperature of the crater wall and the

surface above it. The temperature derived from compart-

ment B is higher early in the day than that of compart-

ment A because compartment B views the western part

of the crater, which has a higher temperature because of

the relatively greater sun elevation. In the afternoon, the

reverse is true.

In Figs. V-20 and V-21, lunar surface temperatures indi-

cated by compartments A and B are shown separately.

Also shown is the computed curve of lambertian tempera°

ture given in Fig° V-2, but shifted 10 deg to the right for

compartment A and 15 deg to the left for compartment B

cr

C¢
ta3
O.

Ld

500

400

500

200

I00

I I I I I I I I I I I I I I I I I I I

I I I 1 I I I I I I I I I I I I I I I
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

500

400

300

200

I00

- I00

-200

-300

-400

I I I I I I I
I0 II 12 13 14 15

I I I I I I I

20 30 40 50 60 70

Fig. V-19.
and B.

I I I I I I I I I I I I I I

16 17 18 19 20 21 22 23 24 25 26 27 28 29

GMT: DAY; DATE (SEPTEMBER 1967)

I I I I I I I I I I I I I I I I I ]
80 90 I00 I10 120 1:50 140 150 160 170 180 190 200 210 220 2:50 240

SUN ANGLE, deg

13::
:3

13::
hi

UJ
I--

Lunar surface temperatures during first lunar day, as calculated from telemetry data for compartments A

JPL TECHNICAL REPORT 32-1246 10Y



5OO

4OO

o_

300

P_

LL.I

2OO

(3-

LLI
h'-

I00

I I I I I I I I I I I I I I I I I I I

COMPARTMENT A

.... PREDICTED TEMPERATURES (FIG. V-2)

BUT SHIFTED TO THE RIGHT IOdeg
IN SUN ANGLE

I I I I I I I I I I I I I I I I I I I
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

I I I I I I I I I I I I I I I I I I I I I
I0 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

GMT: DAY_ DATE (SEPTEMBER 1967)

I I I I I I I I I I I I I I I I I I I I I I I I I

20 30 40 50 60 70 80 90 I00 I10 120 130 140 150 160 170 180 190 200 210 220 230 240

SUN ANGLE, deg

500

400

3OO

2OO

I00

-I00

-2OO

-300

-400

w"
rr

n-
_J
13-

UJ
p-

Fig. V-20. Lunar surface brightness temperatures during first lunar day: compartment A data compared with predicted

temperatures.

108 JPL TECHNICAL REPORT 32-1246



5O0

400

300

w

w

200

I00

I I I I I I I I I I I I I I I I I I I

COMPARTMENT B

PREDICTED TEMPERATURES (FIG. V-2)

BUT SHIFTED TO THE LEFT 15 deg
IN SUN ANGLE

\

\\

I I I I I I I i I I I I I I I I I I I

254 255 256 2,57 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

I I I 1 I I I I I I I I I I I t I I I I
I0 II t2 15 14 t5 16 17 18 19 20 21 22 23 24 25 26 27 28 29

GMT: DAY; DATE (SEPTEMBER 1967)

500

4OO

300

200

I00

o

- I00

-200

-300

-400

t I I I t I I I I I • I t I I I I I I I I I I I I I

20 .30 40 50 60 70 80 90 I00 I10 120 130 140 150 160 170 180 190 200 210 220 230 240

SUN ANGLE, deg

Fig. V-21. First-day brightness temperatures on lunar surface: compartment B data compared with predicted temper°

atures.

JPL TECHNICAL REPORT 32-1246 109



to account for the approximate slope of the local lunar

surface. The temperatures sensed by compartment A

agree well with the predicted lambertian temperature in

the afternoon; however, there is only fair agreement in

the morning and at noon. There is fair agreement in the

morning, good agreement at noon, and poor agreement in

the afternoon for compartment B temperatures.

Lunar surface brightness temperatures derived from

compartment B data for Surveyors I and III (Fig. VI-28 of

Ref. V-l), and V (shifted 15 deg to the right) are shown in

Fig. V-22. Compared with Surveyor I and III tempera-

tures, Surveyor V sensed lower temperatures in the morn-

ing, higher temperatures at noon, and lower temperatures

in the afternoon. This temperature difference could be

due to the difference in topography between the land-

ing sites.

Figure V-23 shows the lunar surface temperatures, as

derived from compartments A and B, after sunset; also

included are Surveyor I data and theoretical gamma cool-

ing curves taken from Fig. V-1. Note that both compart-

ments sensed about the same surface temperature for the
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Surveyor V site during the night and indicated an effec-

tive 7 of slightly less than 500.

3. Eclipse

Figure V-24 shows the temperature data, as derived

from compartments A and B during the eclipse. At the

start of penumbra, compartment A sensed a higher tem-

perature than compartment B; however, at the end of

umbra, the reverse was true. The reason for this tempera-

ture crossover may be that the gamma of the surface

material viewed by compartment A is somewhat higher

than that of the material viewed by compartment B. By

comparing compartment A and B eclipse data with the

predicted lunar surface temperatures during the eclipse

(Fig. V-4), it is observed that the temperature lagged and

did not fail as low as predicted. Using the eclipse cooling

curves of Jaeger (Ref. V-6), it is estimated that a lunar sur-

face with an effective _, of about 500 would exhibit the

observed cooling. If the heat capacity of the outboard face

were included in the calculations, the observed lunar sur-

face temperature lag would be reduced, and a somewhat

lower temperature would be indicated at the end of

umbra.

C. Summary

From the analysis, the following tentative conclusions

may be drawn.

1oLunation Data

(1) Differences in the lunar surface temperature, de-

rived from compartments A and B data during

morning and afternoon, may be explained by the

different sun phase angles at the local lunar surface.
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(2) For predicted and observed surface temperatures
for compartment A, there is fair agreement in the

morning, fair agreement at noon, and good agree-
ment in the afternoon. For compartment B, there is

fair agreement in the morning, good agreement at
noon, and poor agreement in the afternoon. Both

compartments sensed higher than predicted tem-
peratures at noon. Some of this temperature differ-

ence, however, is due to not fully considering the
compartment view factor, as related to the actual

landing site topography.

(3) During the second lunar day, the compartment A
and B telemetered temperatures were higher for the

identical sun angles, perhaps because of the deterio-
ration of inorganic white paint; however, further

analysis is necessary to confirm this.

(4) Compartments A and B sensed essentially the same
lunar temperature after sunset. It is estimated that

a lunar surface with an effective 3' of about 500

would exhibit the observed cooling.

2. Eclipse Data

(1) At the start of penumbra phase, compartment A

sensed higher surface temperatures than compart-
ment B; at the end of the umbra phase, the reverse

was true. This may indicate that the surface mate-
rial viewed by compartment A has a slightly higher

gamma than the surface material viewed by com-
partment B.

(9) During both penumbra phases, observed lunar sur-

face temperatures lagged those predicted from
terrestrial data. Lunar surface temperatures at the
end of the umbra phase were 50°K above those

predicted, suggesting an effective _ of about 500.
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VI. Astronomy

R. H. Norton, Jo E. Gunn, W. C. Livingston,

G. A. Newkirk, and H. Zirin

Following sunset (for the spacecraft) on the first lunar

day, at 10:56 GMT on Day 267 (September 24, 1967),

37 pictures of the K_ and F-corona were obtained during

a 3.5-hr period while using the green filter. The focal

length was 100 mm (narrow angle); the lens was focused

at 4 m for each picture° Exposures obtained and the

f-ratios used are listed in Table VI-1.

The resulting circle of confusion ranges from about

0.2 solar radius at [/22 to 1 solar radius at f/4. For the

bright K-corona (Fig. VI-1), a fairly sharp definition

could be achieved by using the f/22 aperture. On the

longest of these exposures (10 min)_ streamers may be

traced out to approximately 6 solar radii; the brightest

streamers appear in the southern hemisphere.

Table Vl-lo Observations of solar corona at landing site

Number of

frames

Indusive time

(GMT)

11:02:10 to 11:03:26

11 .'05:39

11:07:20 to 11 .'08:32

11 ".10.'55 to 11:12:42

11 _18:19 to 11:23:35

11:25:21 to 11:45:55

12:02:49 to 12:20:25

12:22:44

12:30:15 to 12:48:36

12:54_55 to 13:20.'03

13:29:44 to 13:42:21

13:49:26 to 13:55:31

14..04:11

14:10:07 to 14:28:26

Iris

f/8

f/22

f/22

f/22

f/22

f/22

f/11

f/4

f/8

f/4

f/4

Shutter closed, 5-min

f/4

f/4

• Shutter

1.2 sec

10 sec

30 sec

90 sec

5 min

10 min

5 min

40 sec

5 min

5 min

5 mln

background calibration

5 min

5 min

Azimuth

+114

+114

+114

+114

+114

+114

+114

+114

+114

+114

+117

+117

+117

Elevation

+7

+7

+7

+7

+7

+7

+7

+7

+7

+7

+7

+7

+12
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Fig.VI-1. Pictureof theK-corona;a 30-see exposure at f/22. The upper solar limb is approximately

0.5 solar radius below the horizon. Several coronal streamers are visible° The K-corona in this picture is

produced by scattering from electrons near the sun. The white circle denotes the relative size and location

of the sun (Day 267, 11:08:32 GMT).
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Fig. VI-2. Picture of the F-corona: a 5-min exposure at f/4. The solar limb is 5 solar radii below the

horizon. The F-corona in this picture is produced by scattering from particulate matter between the earth

and the sun° The plane of the ecliptic is nearly perpendicular to the horizon. The asymmetry visible in

the F-corona presumably is due to the decrease in particle density with height above the ecliptic plane.

The w|,_,_ circle denotes the relative size and location of the sun (Day 267, 13:20:03 GMT).
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As the corona set lower on the western horizon (at the
rate of 2 solar radii/hr), successively larger apertures

were used to film the fainter F-corona (Fig. VI-2). Be-
cause of the increased video background level in expo-

sures longer than 5 min, a sequence (usually four) of
successive identical exposures was made at each f-ratio.
(These exposures will be summed to increase !:_:ceffective

dynamic range and to reduce random noise.) Calibration
exposures were also made with the shutter closed. Dur-

ing each 5-min integration, engineering interrogations of
the spacecraft were performed, permitting full use of
observation time and continuous records of spacecraft

temperatures.

By 12:55 GMT, the bright K-corona had disappeared
below the lunar horizon, and several series of full-

aperture, 5-min exposures were made of the F-corona
(inner zodiacal light). The camera was then shifted from

the sunset position to record the F-corona at even greater
distances from the sun. Data thus far indicate that infor-

mation on the F-corona has been obtained out to 30 solar

radii. Plans for analysis of the data include:

(1) Comparison with K-coronometer and other tele-
scope data.

(2) Addition and/or subtraction of multiple exposures
in each series.

(3) Subtraction of successive pictures to obtain the

coronal brightness in the narrow strip eclipsed
between frames.

(4)

(5)

Determination of the brightness distribution in the

F-corona as far from the sun as possible in order
to establish the distribution of particulate matter
in the inner solar system.

Analysis of scattering effects by the lunar horizon,
or a possible lunar atmosphere. (Note the "beaded"
structure in Fig. VI-1.)
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VII. Chemical Analysis of the Moon at Surveyor V

Landing Site: Preliminary Results

A. L. Turkevich, E. J. Franzgrote, and J. H. Patterson

A remarkable amount of information about the moon

has been obtained by earth-based measurements. To-

gether with theoretical arguments, these have provided

clues as to the origin and history of this earth satellite.
In the last decade, such earth-based observations have

been supplemented by results from the United States and

Russian space programs, which have provided high-

resolution photographs, data on the physical properties
of the lunar surface, and radiation measurements. Some

of the basic questions about the moon, however, can best

be answered by a knowledge of the chemical composi-
tion of lunar material; observations and measurements

until now have provided only indirect information about
this important property. The Alpha-Scattering Experi-

ment is designed to measure directly the abundances of
the major elements of the lunar surface. Surveyor V was

the first lunar soft-landing vehicle to carry such an experi-
ment.

The alpha-scattering method of chemical analysis, the
instrument used on the Surveyor mission, and the nomi-

nal mission operation have been previously described

(Refs. VII-1 through VII-4). This technique is especially

suitable for instrumented space missions because of char-
acteristics such as compactness and relative simplicity

of operation. It involves the measurement of the energy
spectra of alpha particles scattered backward from the

atomic nuclei of the sample and of protons obtained from
the nuclear reactions of alpha particles with some of the

lighter elements. These spectra contain quantitative in-
formation on all major elements in the sample except

hydrogen, helium, and lithium. The method can readily
distinguish among the lighter elements, but the atomic
weight of heavier constituents can be identified only

approximately.

Only part of the data from the Surveyor V mission have
been analyzed in a preliminary manner. However, the

experiment has already established the principal chemical
elements present on the lunar surface at the Surveyor V

landing site. This section summarizes the main features
of the instrument and of the experiment, describes the
actual mission sequence, and presents the preliminary

results and some discussion of their significance.
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A. InstrumentDescription
The alpha-scattering instrument consists of a sensor

head, which is deployed directly to the lunar surface, and
a digital electronics package located in a thermal com-

partment on the spacecraft. Associated equipment in-
cludes an electronic auxiliary, a deployment-mechanism/
standard-sample assembly, and a thermally insulated
electronics compartment. Figure VII-1 is a photograph
of the instrument and its auxiliary hardware.

The total weight of the alpha-scattering equipment,
including mechanical and electrical spacecraft-interface

substructure and cabling, is 13 kg. Power dissipation is
2 W, increasing to 17 W when heaters in the sensor head

and electronics compartment are both active.

1. Sensor Head

The sensor head is primarily a box (17.1 × 16.5 × 13.3

cm high), with a 30.5-cm-diameter plate on the bottom.
The main purpose of the plate is to minimize the proba-

bility of the box sinking appreciably into a possibly soft
lunar surface. Figure VII-2 shows a bottom view of the

sensor head. In the bottom of the sensor head is a sample
port, 10.8 cm in diameter. Recessed 7 cm above this cir-
cular opening is a set of six curium-242 alpha sources,

collimated in such a way that the alpha particles are
directed through the opening. Across the face of each

collimator is a thin, aluminum-oxide film to prevent re-
coils from the alpha source from reaching the sample
area; a second film is mounted in front of each collimator

for additional protection. Close to the alpha sources are

,  iii i̧!ii:

Fig. VII-1. Alpha-scattering instrument and auxiliary hardware.
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Fig. VII-2. Bottom view of the alpha-scattering sensor head.

two detectors arranged to detect alpha particles scattered
back from the sample at an average angle of 174 deg

from the original direction. These 0.2-cm z alpha detectors
are of the silicon, surface-barrier type, with an evaporated-
gold front surface. 1 Thin films are mounted on col-
limation masks to protect the detectors from alpha

contamination and excessive light.

The sensor head also contains four lithium-drifted,

silicon detectors (1-cm _ area each) designed to detect

1A. _. Tuzzolino, J. Kristoff, and M. Perkins (to be submitted to

Nuclear Ir_truments and Methods, November 1967).

protons produced in the sample by the alpha particles.
Gold foils, approximately 11_ thick, prevent scattered
alpha particles from reaching these detectors. Fig-

ure VII-3 is a diagrammatic side view of the sensor head,
showing the configuration of sources, sample, and
detectors.

Because the expected proton rates from the sample are
low, and because these detectors are more sensitive to

radiation from space, the proton detectors are backed by
guard detectors. Most of the charged particles from space
that strike a proton detector must first pass through the
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Fig. VII-3. Diagrammatic view of alpha-scattering sensor head internal configuration.

corresponding guard detector, whereas protons from the

sample are stopped in the proton deteetor. The elec-

tronics associated with the guard and proton detectors

are arranged so that an event registered in both will not

be counted as coming from the sample. This anticoinci-

dence arrangement reduces significantly the background

in the proton mode of the instrument.

proton systems. This calibration mode is initiated by com-

mand from earth. Small amounts of alpha-radioactive

einsteinium-254 are also used to calibrate the alpha and

proton systems and, in addition, serve as live-time moni-

tors. The einsteinium is located on the gold foil facing

each proton detector.and on the thin films mounted in

front of the alpha detectors.

Separate 128-channel, pulse-height analyzers are used

with the alpha and proton detectors. An output pulse

from a detector is amplified and converted to a time-

analog signal, whose duration is proportional to the

energy deposited in the detector. The outputs of the two

alpha detectors are combined before this conversion; a

separate mixer circuit is used for the four proton-detector

outputs. A ratemeter circuit is used to measure the fre-

quency of events occurring in the guard (anti-coincidence)

detectors, but provides no information on the energy of

such events.

In addition to the curium-242 sources, detectors, and

associated electronics, the sensor head contains a platinum-

resistance thermometer, a 5-W heater, and an electronic

pulser. The pulser is used to calibrate the electronics of

the instrument by introducing electrical pulses of two

known magnitudes at the detector stages of the alpha and

The external surfaces of the sensor head have been

designed for passive thermal control. A second-surface

mirror on top of the sensor head is used as a radiator

to cool the sensitive components inside. A 5-W heater is

used at low temperatures. The operating temperature

range specified for the sensor head is -40 to +50°C.

2. Digital Electronics

The output of the sensor head is a signal (in time-

analog form) that characterizes the energy of an event

in either the scattered alpha or proton mode of the instru-

ment. The signals from the sensor head are converted to

nine-bit binary words by the digital electronics. Seven

bits of each word identify which of the 128 channels

represents the energy of the registered event. Two extra

bits are added before transmission, one to identify the

start of the word and one at the end of each word, as a
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parity check on transmission errors. Buffer registers pro-

vide temporary storage of the energy information for
readout into the spacecraft telemetry system. The trans-
mission rates are 2200 bits/sec for the alpha mode and

550 bits/sec for the proton mode. Measured events with

energy greater than the range of the analyzers are routed
to channel 126 (overflow channel).

The electronics package also contains power supplies
and the logical electronic interfaces between the instru-
ment and the spacecraft. For example, the output of an

individual detector, together with its associated guard
detector, can be blocked by command from earth. Also
via the electronics unit, the temperature of the sensor

head, as well as various monitoring voltages, can be trans-
mitted to earth.

3. Electronic Auxiliary

The required electrical interfaces between the sensor
head, digital electronics and spacecraft circuits are pro-

vided by an electronie auxiliary that provides command

decoding, signal processing, and power management.
Basic spacecraft circuits interfacing directly with the
sensor head and digital electronics are: (1) the central

signal processor, which provides signals at 2200 bits/sec
and 550 bits/sec for synchronization of instrument clocks;
and (2) the engineering signal processor, which provides
temperature-sensor excitation current and commutation of
engineering data outputs.

The electronic auxiliary provides two data channels

for the alpha-scattering instrument. The separate alpha

and proton channels are implemented using two sub-
carrier oscillators. Characteristics of these channels are

defined as:

Characteristic Alpha channel Proton channel

Data input to elec-

tronic auxiliary

Input data rate

Subcarrier oscillator

center frequency

Digital (non-
return to

zero )

2200 bits/sec

70,000 Hz

Digital (non-
return to

zero)

550 bits/see

5400 Hz

The electronic auxiliary and the digital electronics are
contained in electronics compartment C, which is attached
to the upper part of the spaceframe. For passive control

of temperatures at high sun angles, the top of this com-
partment is painted white and the sides and bottom are

insulated. A 10-W heater assembly, operated by means

of the engineering signal processor, provides active

thermal control at low temperatures. The operating tem-
perature range specified for the electronic units in com-

partment C is -20 to +55°C.

4. Deployment Mechanism/Standard Sample

The deployment mechanism provides stowage of the
sensor head, deployment to the background position, and
to the lunar surface. The sensor head is mounted to the

deployment mechanism by means of three support lugs

on the bottom plate. The deployment mechanism clamps
that engage these lugs are released during the deploy-

ment operation. Figure VII-4 illustrates the two-stage
operation of the deployment mechanism. From the

stowed position, the sensor head is first released on
command to a position 56 cm above the nominal lunar

surface by activation of an explosive-pin-puller device.
From the background position, the sensor head is then

lowered directly to the lunar surface by activation of
another explosive-pin-puller device. The deployment ve-
locity is controlled by an escapement.

A sample of known composition is attached to the plato
form on which the sensor head is mounted in the stowed

NYLON

CORD_

PULLER

BACKGROUNDI II
POSITION_ _ I

._XL
I
I
I
I
I

SPACEFRAME

FEED

CONNECTOR

PLATFORM AND
STANDARD
SAMPLE

PULLER

I

Fig. VII-4. Operation of the alpha-scattering deployment
mechanism.
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position. This standard-sample assembly covers the cir-

cular opening in the bottom of the sensor head during

spacecraft transit and landing to minimize entrance of

dust and light and to provide a means of assessing instru-

ment performance shortly after the spacecraft lands on

the moon. The standard sample and mounting platform

move aside when the sensor head is deployed to the back-

ground position.

5. Characteristics of Alpha-Scattering Instrument

Flown on Surveyor V

The general Surveyor-type alpha-scattering instrument

has been described in the preceding paragraphs, and in

Table VII-1. Some milestones in the history of the

Surveyor V alpha-scattering instrument

Date Milestones

October 1, 1966

October 29, 1966

November 22, 1966

November 22, 1966

January 18, 1967

May 13,1967

June 21,1967

August24,1967

September 8, 1967

Instrument construction completed

Acceptance test completed

Science calibration completed

Cyclotron tests to measure response to

solar and cosmic particles

Unit delivered to Hughes Aircraft Co.

Solar-thermal-vacuum tests on spacecraft

Combined system test

Radioactive sources installed and final

tests started at Cape Kennedy

Launch (total hours of operation at time

of launch." 925)

Refs. VII-3 and VII-4. The milestones in the history of

the specific instrument used on Surveyor V are listed in

Table VII-l; some of its principal, detailed nuclear

characteristics are given in Table VII-2.

B. Experiment Control

1. Alpha-Scattering Analysis and Command

The Alpha-Scattering Experiment is designed to be

controlled from the Space Flight Operations Facility

(SFOF), Pasadena, Calif., by means of commands trans-

mitted to the spacecraft from the tracking sites. These

commands are chosen on the basis of the analysis of data

received from the spacecraft and relayed to the SFOF

during the mission. The commands control:

(1) Spacecraft power to the instrument.

(2) Deployment of the sensor head.

(3) Number of detectors used.

(4) Electronic calibration pulser.

(5) Heater power for thermal control.

Table VII-3 lists the command assignments for the alpha-

scattering system.

Two types of information relative to the Alpha-

Scattering Experiment are transmitted from the space-

craft: engineering data and science data. The engineering

Table VII-2. Principal characteristics of the Surveyor V alpha-scattering instrument

Curium-242 Source Characteristics

Decompositions per minute,

as of September 10, 1967

(total for six sources)

Mean energy, as measured through

capsule protective films

Energy-spread range for six sources

(full width at half height)

Thickness of secondary protective

film (energy loss for 6.1-MeV

alpha particles)

Alpha Detectors

Thickness of evaporated-gold surface

(energy loss for 6.I-MeV

alpha particles)

Thickness of alpha-mask films (energy

loss for 6.1-MeV alpha particles)

2.75 X 1011 d/mln

6.04 -----0.02 MeV

1.2 to 2.0%

0.010 ±0.003 MeV

0.039 MeV

0.029 MeV

Proton Detectors

Gold-foil thickness (0.420 to 0.429 rail, 5.8 MeV

equivalent to 20.6 to 21.0 mg/cm =)

(energy loss for 6. I-MeV

alpha particles)

(energy loss for 2.0-MeV protons) 1.17 MeV

Guard Detector System

Approximate electronic threshold 0.30 MeV

Guard ratemeter response; events/sec

10 0.080 V

30 0.300 V

100 0.900 V

300 1.800 V

1000 2.500 V

Electronics Energy Scale (temperature of sensor

head and of digital electronics ---- 250C)

Alpha N _- 19.30E -- 12.0

Proton N ---- 19.11E -- 11.65

(N ---- channel number; E _ energy deposited

by particle in detector, MeV)
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TableVII-3.Commandassignments

Command Function

3501

3502

3503

3504

3505

3506

3507

3510

3511

3512

3513

3515

3516

3517

3520

3522

3523

3617

0135

0136

Alpha-scattering power on

AIphauscattering power off

Sensor-head heater power on

Sensor-head heater power off

Deploy to background position (interlocked with 3617)

Deploy to lunar surface (interlocked with 3617)

Alpha detector 1 on

Calibration pulser on

Proton detector 4 on

Proton detectors 3 and 4 off

Proton detector 2 on

Alpha detectors I and 2 off

Proton detectors I and 2 off

Proton detector 1 on

Calibration pulser off

Proton detector 3 an

Alpha detector 2 on

Interlocked with deployment commands

Compartment C heater power off

Compartment C heater power on

measurements are used to monitor instrument voltages,

temperatures, detector configuration, and background

rates in the anticoincidence detectors. The seven parame-

ters that are monitored are listed in Table VII-4.

The science data are the 9-bit digital words that charac-

terize the energy of each of the analyzed alpha particles

or protons. These data leave the instrument as separate

alpha and proton bit streams and modulate separate sub-

carrier oscillators; they are then combined with the

engineering data and transmitted by the spacecraft to

earth. The composite signal from the spacecraft is re-

corded on magnetic tape at the tracking sites. These

FR-1400 tapes containing the raw data comprise the

prime source of alpha-scattering infbrmation for use in

post-mission analysis.

For purposes of monitoring the experiment in real time,

the signal is separated at the tracking site by discrimina-

Table VII-4. Engineering data

Engineering commutator Measurement

AS-3

ASu4

A5o5

AS-6 (digital)

AS-7 (digital)

AS-8

AS-9

Sensor head temperature

Comparlment C (digital electronics

temperature)

Guard rate monitor

At least one alpha detector on

At least one proton detector on

7-V monitor

24-V monitor

tors and bit synchronizers into 2200-bit/sec alpha data

and 550-bit/see proton data. These reconstituted bit

streams are presented to an on-site computer; this com-

puter establishes and maintains synchronization of the

9-bit data words and assembles, within its memory, four

spectra of 128 channels eacjao The four spectra are: alpha

parity-correct, alpha pariS-incorrect, proton parity-

correct, and proton parity-incorrect. In this manner, data

are obtained at the tracking site in accumulations rang-

ing in duration from 2 min during pulser calibration to a

nominal 40 min during sample and background phases.

The assembled spectra are transmitted via teletype to the

SFOF for display and further computer processing.

Data analysis during the mission is performed so that

proper control over the experiment may be exercised. The

engineering data are simply displayed and compared

with pre-launch measurements and predictions to assess

the performance of the instrument and the functioning of

commands.

The alpha and proton science data are also used to

assess the performance of the instrument and are ana-

lyzed to determine the duration of the several operational °

phases. This science-data analysis is conducted in the

SFOF using a 7094 computer program (Ref. VII-5). This

computer program is designed to:

(1) Correct for transmission errors.

(2) Give alarm if event-rate limits are exceeded.

(3) Normalize the spectra to a standard duration, alpha-

source intensity, and number of operating detectors.

(4) Make an approximate correction of the energy scale

on the basis of temperature measurements.

(5) Subtract theoretical or measured backgrounds.

(6) Sum individual spectra.

(7) Provide a statistical analysis and least-squares

breakdown of the spectra into elemental compo-

nents. The least-squares analysis uses a limited

library of only eight elemental spectra.

This program facilitates comparison of lunar data with

pre-launch spectra and gives a sensitive indication of

changes in instrument performance from one accumula-

tion of data to the next.

2o Alpha-Scattering Sequence of Operations

In order to interpret spectra from the hmar sample,

data are obtained on the performance of the instrument
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and on the background radiation in the lunar environment.

These data are obtained by operating the instrument with
the sensor head in each of three positions: (1) stowed,
(2) background, and (3) lunar surface position.

In the stowed position, the sensor head is supported
on the standard ,_;,*_nple.Data received from this sample

and from pulser calibration are compared with pre-
launch measurements and give a measure of instrument
characteristics in the lunar environment.

At the completion of this phase of operation, the instru-
ment is deployed to the background position by earth
command. The supporting platform and standard sample

move aside, leaving the sensor head suspended about 56
cm above the lunar surface. In this position, the sensor

head responds primarily to cosmic rays, solar protons,
and possible surface radioactivity.

When it is determined that sufficient background data °
have been obtained, the sensor head is lowered directly

to the lunar surface upon command from earth. The main
accumulation of data is then begun, interrupted only by

calibrating sequences and other spacecraft operations.

The calibration sequence is used to check the elec-

tronics of the instrument by introducing electrical pulses
of two known magnitudes at the detector stages of the

alpha and proton systems. The calibration pulser is oper-
ated by command from earth. The detectors and their

associated amplifiers are usually calibrated individually
by the proper selection of detector on/off commands.

If operations permit, the television camera is used to
view the surface to which the sensor head is deployed
and to monitor the deployment of the instrument. An

auxiliary mirror is located on the spacecraft to give an
unobstructed view of the deployment area.

Detailed alpha-scattering operations planned for Sur-
veyor V were:

(1) Television survey: stowed phase.

(2) Alpha-scattering operations: stowed phase.

(a) Accumulation of data: 2 to 6 hr.

(b) Calibration.

(3) Deploy sensor head to background position.

(4) Television survey: background phase.

(5) Alpha-scattering operations: background phase.

(a) Calibration.

(b) Accumulation of data: 2 to 6 hr.

(c) Calibration.

(6) Lunar surface television survey.

(7) Deploy sensor head to lunar surface.

(8) Television survey of sensor head in deployed posi-
tion.

(9) Alpha-scattering operations: lunar surface phase.

(a) Accumulation of data: 1 hr.

(b) Calibration.

(c) Accumulation of data: at least 24 hr.

(d) Calibration as required,

C. Mission Description

1. Pre-Launch Operations at Cape Kennedy

Approximately 2 wk before launch, the sensor head was

removed from the spacecraft at Cape Kennedy and taken
to a special facility for final calibration and preparation

for flight. The operations performed in this facility were
a shortened version of the science calibration conducted

on this instrument 9 mo earlier.

A special test chamber equipped for thermal-vacuum

operation and sample introduction was used for the mea-
surements. The sensor head was calibrated at several

temperatures using the electronic pulser and standard
alpha sources; background measurements were taken, and

a light test of the alpha-detector films was performed. The
curium-242 flight sources were then installed, and spectra
were obtained from a small selection of standard materials

including polyethylene, magnesium, aluminum, quartz,
and iron. (A spare sensor head had been calibrated by the

same procedure just prior to this operation and was being
stored in another vacuum chamber.)

To prevent deterioration of the flight sources, the
sensor head was purged with dry nitrogen gas whenever

it was exposed to the atmosphere. Nitrogen purging was
continued after the sensor head was reinstalled on the

spacecraft until the moment of launch.

Final checks of instrument performance on the space-
craft were made using the electronic pulser and by obtain-
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ing nitrogen spectra. The last of these readiness tests was
performed within 12 hr of launch.

2. Transit Operation

Initial operation of the alpha-scattering instrument after
the launch of Surveyor V occurred during transit to the

moon. This operation was performed several hours after
the mid-course velocity correction. The command to turn

alpha-scattering power on was transmitted at 10:36:47
GMT on Day 252 with the spacecraft at a distance of
221,000 km from the earth and 178,000 km from the moon.

At this time, telemetry from the temperature sensor in the

digital electronics indicated approximately -26°C. The

sensor head temperature was - 1°C. The spacecraft, then
in view of the tracking station at Canberra, Australia, was

switched to high power and transmitted alpha-scattering
data via an omnidirectional antenna. Two 10-min accumu-

lations of standard-sample data and seven 2-min pulser
calibration runs were received during less than 1 hr of

operation. The communications link from the spacecraft

was excellent; only one parity error was observed in
6 )< 10o bits. The data agreed well with pre-launch mea-
surements, and showed that the instrument had survived

the launching and mid-course rocket firing. The spectra

also showed that the radiation background rates in cis-
lunar space at that time were low enough for useful sample
measurements. This was encouraging because the back-

ground rates on the moon were expected to be even lower

(due to lunar shielding), unless the surface radioactivity
were unusually high.

3. Lunar Landing

Touchdown of Surveyor V occurred at 00:46:44 GMT
on Day 254, after a terminal sequence in which the main

retro motor was operated to within 1.6 km of the lunar
surface. (The standard end-of-burning distance is about

12 kin.) Since aluminum-oxide particles comprise part of
the exhaust products of this solid-propellant rocket, the

possibility of an effect on the Alpha-Scattering Experi-
ment has been investigated. An analysis of the problem

is included in Appendix A.

The spacecraft came to rest at a slope of about 19.5 deg
on the wall of a crater, with the alpha-scattering instru-

ment on the downhill side. The direction of slope was

favorable for the deployment operations, but the high
view factor to the lunar surface was at least partially

responsible for the high sensor-head temperatures en-
countered during the mission. During spacecraft touch-
down, subsurface material was scattered downslope into

the area where the instrument was later deployed.

4. Post-Landing Operations

a. Stowed position (Day 254). Approximately 2 hr after

landing, an engineering evaluation of the condition of
the instrument was performed. The command to apply

spacecraft power to the instrument was transmitted from
the tracking station near Goldstone, California, at 02:49:34

GMT. The temperature of the sensor head at that time
was 16°C; the digital electronics was at -9°C. Instru-

ment voltages were found to be normal and the guard-
detector event rate was found to be somewhat lower than

that observed in transit, as expected. Because of other

spacecraft operations, alpha and proton data were not

obtained at that time, and power to the instrument was
commanded off at 04:40:00 GMT.

After transfer of tracking operations from California to
Australia, television surveys of the alpha-scattering de-

ployment area were conducted. Television pictures of the

auxiliary viewing mirror were obtained with both wide-
and narrow-angle lenses. Unfortunately, however, only
the lower-resolution, wide-angle frames include the

reflection of the deployment area in the mirror. Figure

VII-5a shows an enlargement of part of one of the wide-
angle frames, with the deployment area indicated. Several
rocks of about 3 to 6 cm in diameter can be seen in an

original print of Fig. VII-5a. The relatively smooth
appearance of the deployment area indicates that the

largest particle in this area is less than about 3 cm across°

Figure VII-6 is a picture of the sensor head in the
stowed position, and was obtained in Australia during

these early television operations. Part of the lunar surface

later covered by the edge of the sensor head may be seen
at the upper right.

The instrument was again activated, and alpha-
scattering operations were resumed at 07:27:02 GMT. At

instrument turn-on, the only anomaly connected with
alpha-scattering commands occurred; the calibration

pulser started operating without being commanded on.
The anomalous behavior was noted by the data analyst
at the Canberra tracking site; the results were also ob-

served in the first accumulation of alpha and proton data
received at the SFOF. The pulser was turned off by
command at 07:50:01 GMT.

At about this time, a decision was made to conduct a

planned vernier rocket engine static firing during the next

Goldstone visibility period. Since the expected effects on
the Alpha-Scattering Experiment were uncertain, it was
decided that the operations in the stowed and background

positions should be shortened as much as possible to allow
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Fig.VII-5.Surveyor V pictures of the alpha-scattering deployment area, as reflected in an auxiliary mirror. (a) En-

largement of part of a wide-angle picture showing area of lunar surface to which the sensor head was later de-
ployed (Day 254, 08:35:17 GMTI. (b) Narrow-angle view of the same area, after deployment of the sensor head

(Day 255, 02:50:32 GMT).

that lunar surface data be obtained before the rocket test.

Only about 12 hr were available for the entire operation.

An abbreviated calibration sequence showed that the
alpha-scattering system was performing well. Three 20-
min accumulations of alpha and proton data from the

standard sample were then analyzed and found to agree
well, within statistics, with pre-launch results. The

decision was made to deploy the sensor head to the back-
ground position.

b. Background position (Day 254). Because of the short

time available, the planned television survey of the
deployment to the background position was not con-

ducted. Instead, the alpha data bit stream was monitored
at the tracking site using an oscilloscope display of the

discriminator output. If the deployment were to proceed
correctly, the alpha event rate was expected to drop by
more than a factor of ten as the standard sample moved

away. The command was sent at 12:14:14 GMT, and after
a few seconds, word of a successful deployment was
received from Australia.

The planned calibration sequence was not conducted

so that a maximum of background data could be obtained.
Eleven accumulations of data for a total of 141 min were

received from the tracking stations in Australia and

Spain; one 2-min pulser calibration was run. The instru-
ment temperatures remained relatively constant during

this period.

Although more data in the background position would
have been desirable, the impending vernier firing test
made it advisable to end this phase of operation and

proceed with the deployment to the lunar surface.

c. Lunar surface position (Day 254). The planned tele-
vision survey of the deployed instrument was again by-
passed, and the deployment was monitored by observation

of the alpha data stream. The command to deploy the
sensor head onto the lunar surface was transmitted from

the tracking station near Robledo, Spain (DSS 61), at
15:36:03 GMT. Seconds later, the event rate had increased

sharply; we knew that we were receiving data from the
lunar surface.
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Fig. Vll-6_ View of the alpha-scattering instrument sensor head in the stowed position on Surveyor V

(Day 254_ 06:26:10 GMT).
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Figure VII-7 shows the total alpha event rate during

this deployment period, as derived later from a magnetic-

tape recording• The rate rose from about one event in

10 sec in the background position to two events per second

on the lunar surface.

The first 20-min accumulation of lunar surface data

started at 15:37:00 GMT. After receiving accumulations
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Fig. VII-7. Plot of event rate of analyzed alpha particles

as a function of time, showing marked increase when

sensor head was deployed from the background position
to the lunar surface.

totaling 100 min, an abbreviated pulser calibration

sequence was performed. Analysis of the data indicated

that the operation was proceeding normally. The sensor

head temperature decreased slowly during this period

from about 34 to 27°C because of the larger view factor

to space in the new position. The digital electronics tem-

perature rose from 16 to 20°C during this time.

The accumulation of spectra continued until the end

of the DSS 61 tracking period. A total of about 5 hr of

data from the lunar sample were received; two calibration

sequences were run.

Television surveys conducted over Goldstone, California

(DSS 11), produced the picture shown in Fig VII-8a, in

which the sensor head is seen resting in proper position

on the lunar surface. (The picture has been corrected by

computer processing for the sine-wave response of the

camera system.) Figure VII_5b is a narrow-angle picture

of the sensor head on the lunar surface taken through

the auxiliary mirror at this time. It may be compared with

the wide-angle picture of the deployment area (Fig.

VII-5a) previously described.

d. Lunar surface operations (Day 255). The vernier

_tatic firing test was postponed a day, and alpha-scattering

analysis of the lunar sample was resumed at 06:18:31

Fig. VII-8. Two views of the alpha-scattering sensor head on the lunar surface. (a) Initial position (first lunar sample).

(b) Position after vernier rocket engine static firing.
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GMT over the Canberra, Australia, Tracking Station
(DSS 42). Accumulation of lunar surface data was alter-

nated with calibration runs for the next 16 hr. By the end
of this period, an additional 12 hr of lunar spectra had

been secured, for a total of 17 hr. Although the sensor
head had risen in temperature to about 42°C, the data

appeared to be of high quality and the performance of
the instrument was excellent. The instrument power was

then commanded off in preparation for the vernier rocket
test.

e. Vernier static tiring (Day 256). The vernier engines
were fired at 05:38 GMT. Television pictures taken shortly

thereafter indicated that the sensor head and/or the
spacecraft had moved. Subsequent pictures showed that

the sensor head had been moved about 10 cm downslope
away from the spacecraft and had been rotated slightly

by the rocket blast. Figure VII-8b is a picture of the sensor
head after the vernier firing taken at the same camera

coordinates as Fig. VII-8a. In the second position, the
downhill edge of the circular plate of the instrument has

dug into the surface material, and the left-hand edge of
the plate is raised slightly above the surface.

About 3 hr later, the instrument was again turned on

and found to be functioning perfectly. The vernier blast
had moved it about one sample diameter; data were being

received from a second lunar sample.

By the end of Day 256, approximately 9 hr of alpha
and proton spectra had been accumulated on the new
sample. The sensor head had risen to 52°C, but all sys-

tems (including the radiation detectors) were still func-
tioning properly.

fo Days 257 and 258. Because of the high temperatures
of the instrument and spacecraft, only 40 min of data

were obtained on Day 257; the instrument remained off
for the entire Day 258.

g. Days 259 through 266. Starting around lunar noon,
the sensor head was shadowed by the planar array (direc-

tional antenna) of the spacecraft. The sensor head tem-

perature dropped sharply, and operations were resumed.
Data were obtained on the second lunar sample for 8
consecutive days; an additional 56 hr of accumulations
were received at the SFOF. These data included several

hours of operation with individual detectors as a test of

sample geometry.

The instrument temperatures fluctuated during this

period as a result of shadowing by various parts of the

spacecraft, but never again exceeded the upper operating

limits of 50°C for the sensor head and 55°C for compart-
ment C. The final operation of the instrument occurred
on Day 266 shortly before lunar sunset at a sensor head

temperature of -56°C (16°C below the specified operat-

ing limit).

h. Summary of alpha-scattering operations and per-
_ormance. Table VII-5 is a summary of the science-data

accumulation time in each of the operational configura-

tions based upon spectra assembled by the on-site com-
puters and transmitted via teletype to the SFOF. (A
total of 107 hr of data was recorded on the FR-1400 tape

recorders during the 193 hr that the instrument was acti-

vated.)

The performance of the alpha-scattering equipment and

operational system during the Surveyor V mission was
excellent.

All ten of the detectors in the sensor head functioned

properly. Only once, during a period of rapidly changing

temperatures, was there a suggestion of noise in the

proton system. Sharp breakpoints in the sample spectra
showed that the high quality of the curium-242 sources
had been preserved. The films covering the sources and

alpha detectors had survived the launch, mid-course
maneuver, and touchdown operations. The electronics,

calibration pulser, and einsteinium sources performed
properly as evidenced by the sharpness of calibration

peaks and agreement with pre-launch data. The guard
detector and anticoincidence system worked as designed;

guard monitor voltage and proton background spectrum
agreed well with predicted values.

The digital electronics, instrument power su.pply, and

electronic auxiliary performed as designed. Circuits used
to monitor engineering parameters provided good data.

Nearly 600 commands were transmitted to the alpha°
scattering system; with the exception of the one cited, all

Table VII-5. Science-data accumulation times

Operational configuration Accumulation time, rain

Transit

Stowed (standard sample)

Background

Lunar surface sample 1

Lunar surface sample 2

Calibration

Total

20

7 _

170

1056

4005

281

5607min(93.5 hr)
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commands gave the expected response. The deployment

mechanism functioned properly in spite of the 19.5-deg

tilt of the spacecraft.

The communications link from the spacecraft was

excellent; a bit-error-rate of less than 10 -'_ was estimated

from the parity-incorrect spectra. In general, deviations

from this high-quality data reception occurred only when

the spacecraft was being tracked near the earth's horizon.

Both of the major alpha-scattering computer programs

and associated equipment gave excellent processing of

the science data.

Television support of the alpha-scattering operations

was very useful and, except for the lack of high-resolution

coverage of the deployment area, pictures were of high

quality.

D. Results

1. Standard Sample Measurements

As indicated previously, there were two measurements

made of the standard sample by the alpha-scattering

instrument during the Surveyor V mission. The first of

these was during the transit phase, while in space between

the earth and the moon; data obtained during the 20 min

of measurement are shown, together with the associated

statistical errors, in Fig. VII-9. In this figure, the observed

events per channel of the alpha and proton modes of the

instruments are plotted, on a logarithmic scale, as a func-

tion of the channel number (energy). The smooth curve in

each case is derived from data obtained on a similar

sample during the final calibrations of the sensor head at

Cape Kennedy about 2 wk before launch. The pre-launch

data have been increased by the background rates ob-

served later on the moon.

It is seen that the data obtained during the short

transit-phase operation are close to those expected from

the standard sample. In particular, the agreement of

observed and predicted events in the alpha mode at ap-

proximately channel 105 is evidence of little or no radio-

active contamination which would have appeared had

the thin protective films over the sources broken. Thus,

the instrument had successfully survived the launch

conditions.

Fig. VII-9. Transit-phase data on standard sample. Data taken by the alpha-scattering instrument in the alpha and

proton modes during the 20-min measurement of the standard sample during the flight to the moon. The experi-

mental points, with statistical errors, are the averages of two channels (except in the overflow channel 126) in order
to improve their statistical significance. The peaks at around channel 112 in both modes are due to the Es TM placed _ '_: '"::':........

near the detectors before launch. These experimental data have not been corrected for the slightly nonstandard

response of the. instrument clue to the low temperature at this time.

The smooth curve in each case is derived from data obtained just before launch at Cape Kennedy. These have

been corrected slightly for differences in digital electronics units (the Cape Kennedy measurements were made with

the Surveyor V sensor head, but with a different digital electronics unit than the one flown on the mission); for the

slightly different size polypropylene grid covering the standard glass sample flown on the mission as compared with

that in the final calibrations; and for small differences in distance of the sample from the detectors of the instrument.

The pre-launch data have also been increased by the background rates observed later on the moon.
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The second measurement of the standard sample

occurred after the landing of Surveyor V on the lunar

surface. The data obtained during 60 min of measurement

are shown in Fig. VII-10, together with their statistical

uncertainties. In this case, the original data, as available

from teletype transmission from overseas stations, have

been corrected approximately to standard instrument

characteristics by the SFOF computer. The background

levels observed in the next stage of lunar operations are

indicated by the solid curve.

The data presented in Fig. VII-10 are similar to those

obtained on the standard sample before launch and during

the short transit-phase operation (Fig. VII-9). A computer

analysis of these data from the standard sample on the

moon (after background subtraction) in terms of a library

of eight elements (C, O, Na, Mg, A1, Si, Ca, and Fe) leads

to a very good fit (see Fig. VII-11). The resulting chemical

analysis of the standard sample glass is shown in Table

VII-6. The last column in this table gives the chemical

composition of the glass determined before launch by

Table VII-6. Analysis of standard glass sample

on the moon

Element

Oxygen

Sodium

Magnesium

Aluminum

Silicon

Calcium

Iron

Surveyor V
analysis _

56.4

7.3

7.6

2.0

20.2

-- 1.5

8.1

Atomic percent

Standard chemical

analysis

58.6

7.7

8.5

1.5

17.2

6.5

aThe Surveyor V results are normalized to 100% on a carbon-free basis. The glass
was covered by a t0olypropylene grid that masked about 25°/o of the area.

conventional analytical techniques. Table VII-6 demon-

strates that, even in as short a time as 1 hr, a chemical

analysis of the glass agreeing with known values to within

several percent was obtained by the alpha-scattering

instrument under lunar operating conditions.

Fig. Vli-,0o Standard sample measurement on the moon. Data taken by the alpha-scattering instrument in the alpha

and proton modes during 60 min of measurement of the standard sample after lunar landing. The experimental

points (crosses) are indicated with statistical (1or) error bars. They have been corrected approximately to standard
instrument response characteristics° The peaks at around channel 110 in both modes are clue to EsTM placed near the
detectors before launch. The solid curve in each case is a smoothed version of the background rates observed in the

next stage of lunar operations°
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Fig. VII-| 1. Computer analysis of standard sample on the moon. Comparison between the calculated spectra

(smooth curves), using an eight-element library, and the data obtained during 60 min on the moon (after subtraction
_l- of the background rates observed on the moon). The computer comparison has been made over channels 8-85 for

the alpha mode, and over channels 8-110 in the proton mode.
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2. Lunar Background Measurements

The second stage of the Alpha-Scattering Experiment

Mission Plan is designed to measure the backgrounds in

the lunar environment. In this stage of the Surveyor V

mission, the sensor head was suspended approximately

60 cm above the lunar surface. The data obtained from

140 rain of operation in this phase are shown in Fig°

VII-12. Shown, also are the pre-mission predictions of

the expected rates due to instrument background, and to

solar and cosmic radiation.

In spite of the difllculty in calculating the contributions

due to solar and cosmic radiation in the complicated

geometry of the instrument and detectors, the predictions

for the proton mode agree quite well in spectral shape,

and are only about 20:g lower than the rates observed° The

observed rates in the alpha mode, however, are much

higher than the predicted ones, particularly in the middle-

energy region. Although the reason for this is not under-

stood with certainty, this background was still a small

fraction of the response of the instrument from a lunar

sample (see below) over most of the spectrum.

The solar and cosmic radiation were the prime contrib-

utors to the background in the proton mode. Because

this background was a significant fraction of the signal

from the lunar sample in many parts of the proton speco

trum, there was concern that variations in this contribution

could affect the lunar sample data. For this reason, a

cheek on particle radiation in space was provided by

reports every 4 hr from the Imp IV satellite. 2 The alpha-

scattering instrument itself had built-in monitors through

the guard rate voltages and the events, primarily in the

proton mode, in spectral regions above 6.5 MeV. These

data indicated that the space particle rate was the same

(to within 10_) during the first 900 min of lunar sample

data as during background measurements. Information

from the other indicators was consistent with this result.

2These data were made available on a near-real-time basis by Dr.
John Simpson of the University of Chicago and the Small Satellite

Tracking Center at Goddard Space Flight Center.

Fig. VII-12. Background measurements on the moon° Data taken by the alpha-scattering instrument in the alpha

and proton modes in 140 min of measurement during the background phase on the moon. The experimental points_

with statistical errors, are usually the averages of two channels (except near the EsTM peak and at the overflow

_- channel 126) in order to improve their statistical significance. The experimental points have been corrected approxi_

mately to standard instrument response. The smooth curve, in each case, is the pre-mlsslon prediction of the back-

ground rates based on prelaunch instrument backgrounds and calculated contribution of the solar and cosmic_ray
contribution on the moon.
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3. Lunar Sample Measurements

Data were obtained by the alpha-scattering instrument

on two samples of the lunar surface. So far, only the data

transmitted by teletype from the overseas receiving sta-
tions are available for analysis° Of these data, only those
taken on the first lunar sample (before the vernier firing)

have been examined° These have been subjected to only
superficial certification of quality, and then processed by

techniques designed primarily for monitoring instrument
behavior during actual mission operations..Thus, only

approximate corrections have been made to the data for
the differences in temperature at which they were ob-
tained. Similarly, the computer analysis has made use of

only a small library of elemental spectra. Therefore, the
present results relate, to a limited number of elements and

must be assigned larger errors than will be given at a
later stage of analysis° Results seem to be firm and sig-

nificant enough to warrant publication at this time°

The observed scattered alpha spectrum and the spec-

trum of protons from (a, p) reactions from 900 min of
measurement on the first lunar sample are presented in

Fig. VII-13. The ordinate, for each spectrum, is the num-

ber of events per channel of the 128-channel analyzer,
plotted on a logarithmic scale as a function of the channel

number (energy). The statistical errors are indicated, to-
gether with a smoothed version of the background meas-

ured while the instrument was suspended over the lunar
surface. It is seen that, for most of the alpha spectrum,

the signal from the alpha particles scattered from the lunar
surface is an order of magnitude higher than the back-

ground; the situation is less desirable, although adequate,

in the proton mode. The peaks at around channel 110 in
the two spectra are due to the 6.42-MeV alpha particles

of Es TM placed near the detectors as energy markers.

Qualitative inspection of the alpha spectrum of Fig.

VII-13 shows distinct breakpoints at energies (indicated
by arrows) corresponding to maximum energy scattering

from nuclei of mass 16 (oxygen), mass 28 (silicon), and
approximately mass 58 (iron, cobalt, and nickel). More-

over, the low response (above background) beyond chan-
nel 73 indicates a relatively low abundance of elements

of mass number heavier than 65. Similarly, the high-
energy proton spectrum (above channel 60) of Fig. VIIo13

is characteristic of protons from aluminum.

4-

FigoVII-13o First lunar sample° Data taken by the alpha-scattering instrument in the alpha and proton modes dur_

ing 900 rain on the lunar surface° The experimental points (crosses) are indicated with statistical (1_) errors° The
data have been corrected approximately to standard instrument response° The solid curve in each case is a smoothed

version of the background observed in the previous stage of lunar operations. The peaks at approximately channel
110 in both modes are due to EsTM placed near the detectors before launch. The positions of prominent features in

some of the elemental spectra are indicated by arrows with chemical symbols.
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By the methods given in Refs. VII-2 and VII-4, the
observed alpha and proton spectra have been analyzed,
thus far, by a computer into the spectra of only eight

elements: C, O, Na, Mg, A1, Si, "Ca," and "Fe." The
"Ca" stands for elements with 28 < A _ --- 45, and "Fe"

represents elements with _ 45 _ A _ 65. Figure VII*14
shows the agreement between the observed data (after

subtraction of the background and possible heavy element

contribution) and the computer calculated results. It is
seen that analysis into only eight elements represents the
data with very few systematic deviations. One of the

regions of poor fit is between alpha channels 63 and 74.
For this reason, at present, there will be no attempt to

identify the elements heavier than silicon; the total
amount of such elements will be reported as "H.E." Figure
VII-15 shows, in some detail, the contributions of the

individual elements in the library to the net data observed
on the moon.

Table VII-7 lists the results obtained in this way on the

chemical composition of the lunar surface. The table lists
the atomic percent of all atoms (heavier than lithium)

represented by the element in question. The errors quoted
are the present estimates of the reliability of the results;
the statistical errors are much smaller.

Although the present results are preliminary, they have
already been subjected to the following tests to ensure

their validity:

(1) Computer analysis of the three 300-min accumula-
tions of data comprising the total of 900 rain gives
results consistent with those in Table VII-7 and

shows no significant trends.

Table VII-7. Chemical composition of lunar surface
at Surveyor V site

Element Atomic percent a

Carbon

Oxygen

Sodium

Magnesium

Aluminum

Silicon

28 < A_ 65 b

(Fe, Co, Hi)

65<A

<3

58.0 -*-5

<2
3.0 +--3

6.5 _2

18.5 _3

13.0 ±3

>3
<0.5

==Excluding hydrogen, lithium, and helium. These numbers have been normalized to
approximately 100°,_.

bThis group includes, for example, S, K, Ca, Fe.

Fig. V1|-14. Computer analysis of first lunar sample. Comparison between the calculated spectra (smooth curves)
using an elght-element library, and the data (crosses) obtained from 900 rain of measurement of the first lunar

sample° The background measured in the previous stage of operations (increased in the alpha mode by 12 events
_J- per channel per 1000 mln to match the data above channel 75) has been subtracted from the experimental results

before presentation on the graph. The computer fit has been made over channels 8-85 for the alpha mode, and
over channels 8-110 for the proion mode.
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(2) The answers are insensitive to the use of some

reasonable background assumptions other than the
smoothed versions shown in Fig. VII-13. Among

the backgrounds tried were the actual background
data rather than the smoothed version, and no back-
ground.

(3) Although only a limited library, has been used in
getting the results of Table VII-7, it has been

established that the analysis is insignificantly
changed by inclusion in the library of spectra of

nitrogen, fluorine, and potassium.

(4) Although the data in the present state do not justify

such refinements, a computer was programmed to

search for changes in instrument parameters (gain
or zero offset), in both alpha and proton modes,
that would improve the calculated fit to the data.

The result was a significant increase in goodness-
of-fit as measured by a calculation of chi-squared,

and as observed by a better match to such features
in the spectra as the oxygen breakpoint. However,

the analytical results were essentially unchanged.

These tests are not exhaustive, but provide confidence

that the results presented in Table VII-7, within the errors

quoted, will be unchanged by more refined treatments of
the data.

From the analysis presented in the table, it is seen that

the most abundant element on the lunar surface, as on the
earth, is oxygen. More than half of all the atoms are of

this element. Second in importance, again as on the earth's
crust, is silicon. Next in abundance is aluminum (see

Appendix A), and the quantity of magnesium is some-
what lower. At this stage, only upper limits can be placed

on the amounts of carbon and sodium present. The data
indicate surprisingly large amounts of elements heavier

than silicon, 13 ___3_. Although a detailed breakdown of

these elements cannot be made at present, it is possible
to place a lower limit of 35 on the combined abundance of
Fe, Co, and Ni, and an upper limit of 0.5_ on that of still

heavier elements. (Fig. VII-13 indicates a slight excess
of events in channels 75 through 90 of the alpha mode

above those expected on the basis of the background
stage measurements. However, there is some evidence

that the instrument background was somewhat higher
during the lunar sample measurement. An upper limit is,
therefore, quoted at present for the abundance of elements

heavier than nickel.)

Although use of the mean values of Table VII-7 would

indicate a slight deficiency of oxygen needed to oxidize
all the metals, the estimated error ranges at present would

include values not requiring any free iron. The overall
analysis indicates that the lunar surface at the Surveyor V

landing site is a silicate rock similar in composition to
materials available on earth.

Fig. VII-| 5. Contribution of separate elements to least-squares computer analysis of lunar sample data. The library
data for the separate elements are shown in the relative amounts needed to explain the observed lunar data. These .-_
relative amounts, when treated by the methods of Refs° VII-2 and VII-4 lead to the chemical analysis of Table VII-7.
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I:. Discussion

The preliminary results presented in Table VII-7 give
the elemental analysis of the lunar surface material in one

place on the moon. The general region is one of the

relatively smooth (on a large scale) maria that represents
a significant fraction of the visible lunar surface. The

specific landing spot of Surveyor V is just inside a small
crater of Mare Tranquillitatis. This crater has been inter-

preted as being of the "drainage" variety (see Section III).
Analysis of the pictures, moreover, indicates that the

alpha-scattering instrument was lowered onto a surface

covered, to a significant extent, by material ejected by the
footpads during the landing. It can, therefore, be con-

cluded that the sample of the moon analyzed in this
experiment is characteristic of the top layer of lunar mate-
rial at a mare site, but not necessarily that of the undis-
turbed surface. Nevertheless, it should be remembered

that this is a preliminary result, obtained on less than

100 cm 2 of material, by analysis of only the top few
microns of the sample, in one place on the moon. The
surface of the moon, even at a mare site, could well be

chemically heterogeneous on the scale examined.

In spite of these obvious limitations, it is of interest to

compare the results of this analysis with the chemical
composition of other solar system bodies for which data

is available. A comparison with the average chemical
composition of the earth's crust and with some solar data
is presented in Table VII-8.

Table VII-8 shows that the results obtained by

Surveyor v are more comparable to the chemical com-
position of the continental crust of the earth than to that
in the outer region of the sun. Both the moon and the

earth have much less magnesium and more aluminum

relative to silicon than does the sun. Although the com-
parison is closer with the earth's crust, there are significant
differences: there is less sodium and more atoms of ele-

ments heavier than silicon on the moon than on the earth's
crust. There is also an indication that the silicate content

is lower on the moon than on the continents of the earth.

The conclusion indicated by this comparison is that, if

the earth and moon were originally formed from solar-
type material, the major geochemical changes to the mate-

rial at the Surveyor V landing site must have been similar

Table VII-8. Surface chemical composition of
solar system bodies

Atomic percent

Solar atmosphere a Earth Lunar mare
(continental crust) b (Surveyor V site)

Element

O

Na 1.2

Mg 16.1

AI 1.I

sl (20.0)
A _ 28 18.7

62.6

2.6

1.9

6.5

21.2

5.2

58.0 ±5

<2
3.0 -----3

6.5 -----2

18.5 ±3

13.0 +---3

IThe solar values are from H. C. Urey. The abundances of only the heavy non-
volatile elements are given, normalized to a value of 20.00/o for silicon.

bThe values for the crust of the earth are average values for the continents, from
Howard J. Sanders, Chem. and Eng. News, Oct. 2, 1967.

to those that occurred to the materials comprising the
terrestrial continents.

Although an elemental analysis (even one more precise
than the present one) can be only a rough indicator of

detailed rock type, it is of interest to compare the present
results with the chemical composition of some materials
that have been considered as constituents of the lunar

surface. This is done in Fig. VII-16, where a comparison
of the present results is made with the analysis of average
(Ref. VII-6) dunites, basalts, granites, tektites, chondritic
meteorites, and basaltic achondrites. It is seen from this

figure that the lunar surface, at the landing site of
Surveyor V, cannot consist entirely of material similar to
chondritic meteorites or to ultrabasic rocks such as dunite.

Tektitie or granitic materials are more consistent with the

present estimates of errors, although they appear to be
ruled out by the gamma-ray measurements of Vinogradov,
et al. (Ref. VII-7). Of the comparisons made in Fig. VII-16,
the closest agreement appears to be with the chemical
composition of basaltic achondrites and with that of
terrestrial basalts.

Figure VII-16 dearly represents only a few of all
possible comparisons. Such comparisons will be even

more meaningful when the data obtained on Surveyor V
have been completely processed. However, even in the

present state, the results provide experimental information
on the chemical environment on the surface of the moon,
the possible raw materials there, and clues as to the

history of this long-time partner of the earth.
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VIII. Lunar Surface Electromagnetic Properties:

Magnet Experiment

J. Negus de Wys

The morphology of the lunar surface has been a subject
• of considerable speculation throughout history, but only

in recent years has it reached a stage of coritroversial

climax in scientific debates. Before the flight of Surveyor V,
there were two extreme views apparent in lunar literature:
(1) only exogeneous sources could account for lunar sur-

face material, its pulverization and lunar cratering; and
(2) only endogenous sources could explain them.

Through constant pulverization and accretion by me-

teoritic bombardment, an addition of nickel-iron (Ni-Fe)

alloys could be expected to occur in the lunar surface
material. If, however, volcanism and outgassing are the
more active agents, then the iron content would be more

restricted to that of a given rock type.

Ao Purpose of Magnet Assembly

The magnet assembly was installed to determine the
presence, and possibly the amount, of material with high

magnetic permeability that might be present at the
Surveyor V landing site. Materials that would be attracted

to a 500-gauss magnet include free iron, magnetite, and
Ni-Fe from meteorites. The landing site in Mare Tran-
quillitatis is representative of large surface expanses on

the side of the mooh nearest the earth. Mare areas as a

surface unit are not only widespread, but also appear,

from Lunar Orbiter photographs and from landed space-

craft, to be homogeneous. Information obtained from mare
landings probably can be extrapolated to large areas of the

moon with a fair degree of confidence.

Bo Magnet Assembly Description

The magnet assembly, attached to footpad 2, consisted

of a magnetic bar of Alnico V and a nonmagnetic bar
of Inconel X-750; the dimensions of each bar were

5 X 1.27 × 0.32 cm (see Fig. VIII-l). The gauss readings
along the pole faces range from 440 to 680 (Fig. VIII-2).

The magnetic axis is horizontal with the magnetic poles

extending down the left and right sides of the magnet, the
magnetic-field strength down through the center dropping
to zero gauss. Calibration tests of the magnetic-field

strength show the dropoff (see Figs. VIII-3 and VIII-4);
at a distance of 3.8 cm from the Surveyor V magnet, the

strength was <0.38 gauss. Powdered iron was collected
from a distance of 1.93 cm by a 500-gauss magnet in the
laboratory studies (see Fig. VIII-5). A magnet with this

strength on earth supports about 20 g of the magnetic
materials tested.
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Fig. VIII-1. Magnet assembly on footpad 2 of Surveyor V prior to launch at Cape Kennedy. The pattern on bracket

top is gray and white; the bracket side, magnet and nonmagnetic bar are light blue. The Alnico Vmagnet is on the

left.
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Alnico V was selected because its characteristics in

thermal and magnetic regimes made it suitable for lunar

surface tests (see Table VIII-1 and Fig. VIII-6), and be-

cause its magnetic remanence is greater at higher tempera-

tures than for other alloys. It is, however, a brittle material

that frequently contains voids, and must therefore be

handled with some care. To protect the spacecraft and

500_
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LU
Z
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,/

200
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0.51 1.02 1.52 2.0:5 2.54 5.05 3.56 4.07

DISTANCE FROM POLE FACE, cm

Fig. VIII-4. Plot of magnetic-strength dropoff from areas

of 620 and 500 gauss at the surface. Measurements were

made every 0.254 cm.

Table VIII-1. Properties and chemical composition
of Alnico V

Chemical Elements

Iron, % _50.8

Titanium, % 24

Nickel, % 14

Aluminum, % 8

Copper, % 3.2

Cobalt, %

Mechanical Properties

Tensile strength, dynes crn-2 _3.6 X 105

Transverse modulus of rupture, dynes cm -2 _7.2 X 10_

Rockwell hardness C50

Electrical Properties

Resistivity temperature (25°C), microhm -acm -2 47

Magnetic Properties

Peak H, oersted 3,000

Peak induction, B, gauss 16,500

Residual induction, Br, gauss 12,600

Coercive force, He, aersted 600

Coefficient of linear expansion

20 120°C 11.5 X 10-_

201o 220"C 11.5 X 10 -e

20 to 300"C 11.6 X I0 -e

Curie point, (+ 10°C), *C 890

Specific heat (30 to 4OOOC), cal g-_/°C 0.11

Additional Properties

Density, g cm -3 7.3
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Fig° VIII-5. Distance from which magnet on Surveyor V will attract powdered iron on earth is shown by placing the

magnet adjacent to ,_,wdered iron (above) and displacing the bar to the left (below). The magnet collected iron

from a distance of 1.93 cm.

JPL TECHNICAL REPORT 32-1246 155



100 _

"' 80

"' 60 ALNICO "V_n,-

o_
I.- 4O

z

_ 0
0 I00 200 300 400 500 600 700 800 900 I000

TEMPERATURE, °C

Fig. VIII-6. Magnetic remanence vs temperature for Al-

nico V. internal structure and the metallurgical properties

of the alloy used control the effect of high temperatures

on magnetic materials. Alnico V has retraceable temper-

ature characteristics over a wide range (--200 to 300°C).

This is one of the properties that dictated its choice for the

Surveyor V magnet.

Fig. Viii-7. Landing mode of footpad 2. The spacecraft landed on a 19.5-deg, inner slope of a 9- X 12-m crater, caus-

ing footpad 2 to slide downhill a distance of about 1 m at a depth of 3 to 10 cm through the lunar surface material.

Note material on top of the footpad; also note well-defined footpad imprint at the end of the slide and the scalloped

effect in part of the trench. This is indicative of the slight bouncing of the footpad in sliding. Velocity during down-

hill trenching is estimated at 1 m sec -1 (Day 255, 00:18:35 and Day 254, 23:29:23).
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experiment, both the magnetic bar and control bar were

bonded with RTV-60 (bonding agent) to the bracket in
addition to the screw attachment°

In no area over the surface of the control bar was the

magnetic field reading > 0.1 gauss; this reading was ob-
served over the attachment screws only.

C. Landing and Vernier Rocket Engine Firing

Surveyor V landed in a 9- )< 12-m crater on a 19.5-deg,
inner north-facing slope. Footpads 2 and 3, on the down-
hill side, at a velocity of about 1 m sec -1, performed a
bouncing 1-m-long slide through the lunar surface material

forming a trench before coming to a halt. The trench is 3
to 10 cm in depth (see Fig. VIII-7). From this landing mode
and from the distribution of lunar material over the front

of the footpad, it may be concluded that the magnet assem-
bly contacted the lunar surface material. If the trench
length is multiplied by the magnet length, then the ap-
proximate size of the lunar area to which the magnet was
exposed is 500 cm 2.

Lunar material is seen in the honeycomb below the
bracket, on the bracket, adhering to the lower right side

of the control bar, and covering the magnetic bar. The
fine coating on the control bar and bracket is probably due

to vacuum cohesion. Because the magnet is on the western
side of footpad 2 and the sun was low in the east, the first

picture of the magnet assembly after landing (Fig. VIII-8)
was in deep shadow. However, light patches of uncovered

blue paint contrast brightly beside the dark lunar mate-
rial, permitting the areas covered to be identified.

I_a landing, the magnet bracket may have been de-
formed, possibly cracked. In Fig. VIII-9, the light line

across the bracket may be seen; the white stripe on the
bracket departs from a straight line. (An approximately

5-deg departure is measurable.) The magnet assembly may
have hit a rock in landing, since the assembly extends from

the side of the footpad. It may also be noted that the

side of the magnet assembly is no longer parallel to the

honeycomb-structure pattern; before flight, the relation-

ship was parallel.

The 0.55-see firing of the vernier engines caused an
estimated 1 dyne cm -2 dynamic pressure on the magnet
assembly_ sufllcient to clean off the vacuum cohesion mate-
rial on the bracket and control bar, blow material from the
honeycomb structure, clean off the top outer edge of
the bracket, and remove material from the zero-gauss
area down the center of the magnet (see Figs. VIII-8 and
VIII-IO).

From laboratory jet exhaust studies in vacuum it was

found that little, if any, material would be added to the
magnet by the firing of the vernier engines.

Shadow progression studies conducted in the Surveyor

Experiment Test Laboratory provided a key to the possi-
ble time of full lighting on the magnet assembly (Fig,
VIII-11). Because of the combination of the crater horizon

and slope angle, accurate predictions were difllcult. The

sun shone fully on the bracket for only 1.5 hr of the entire
lunar day (approximately 14 terrestrial days). A sequence

taken through the first lunar day and ending with the
anticipated sunset lighting is seen in Fig. VIII-12. In
sunset lighting, the coating of dark material adhering to

the pole faces of the magnet and the particles forming
bridges across the area of lower strength down the magnet

center could be seen distinctly. The shape and size of the
particles has not been determined; however, they appear
to be smaller than camera resolution (1 mm). Most of the

lunar material through which footpad 2 slid consists of
particles less than 1 mm in diameter, similar to the mate-

rial observed in Surveyor I and III pictures.

From simulation studies of the Surveyor V landing, it
was concluded that the passage of the magnet through

about a meter of lunar material would not cause a very
different result from a single, solid impact in the same
material.
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Fig° VIII-8o Magnet assembly before and after firing of the vernier engines. (a) Right after landing.

Note lunar material on bracket, control bar, and in honeycomb; also note darkly covered magnet. Light

patches are blue paint showing through. Note that attachment screws on magnet are not Iouveredo The

__ honeycomb to the right of the assembly has been deformed (compare with Fig° VIII-l). The material on
the bracket and control bar is probably caused by vacuum cohesion (Day 255, 00:33:33; computer-

enhanced picture). (b) After vernier firing. Note material has been blown out of the honeycomb, off the

control bar, off the front edge of the bracket, and off the center of the magnet where the magnetic

strength drops to zero gauss (Day 259, 04:48:26; computer-enhanced picture SWRF R-049).
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Fig. VIII-9. Sequence showing change in appearance of the footpad 2 top after vernier engine firing, and possible

break in the top of the aluminum bracket holding the magnet assembly, ia) Footpad 2 right after landing. Note

material on top of footpad. Dark, wavy line on bracket top is the shadow from the safety wire; the lighter line below

is the site of a possible break in the bracket, probably caused by the first encounter with the lunar surface (at far

right of Fig. VIII-7 showing the trench) {Day 254, 02:29:34). (b) In different lighting, seven terrestrial days later and

after vernier firing. Note change in debris patterns on the footpad top. The linear break shadow is not visible, except

vaguely in the center. However, by projecting a straight line along the white stripe on the bracket, it will be noted

that the lower part of the stripe is offset by about 5 deg. This may explain why the light force of the vernier exhaust

was more effective in cleaning off the bracket edge than farther back on the bracket. The edge may be slightly

lower, which is due to the break (Day 261, 05:29:38). ic) Footpad 2 before launch, showing straight white stripe
on the inner (left) side of the bracket.
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Fig. Vlll-lO. Vernier exhaust vectors relative to the

magnet assembly. The light circles represent 1.1 m from

verniers at which distance the dynamic pressure was

approximately I dyne cm _. The gas dispersion curve

becomes asymptotic at about 2.44 m from the vernier

engines. Left: view is looking down on the space-

craft, located on a 19.5-deg slope. North is to the top,

footpad 2 is top right. Right: view looking east, show-

ing the vernier exhaust vector relationships. The main

vectors are lateral, the top of the footpads probably

near the height limit for the main vectors.
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DAY 254 DAY 254 DAY 255 DAY 255

SUN ELEVATION: 26.25" SUN ELEVATION: 26.91 ° SUN ELEVATION: 32.52 ° SUN ELEVATION: 38.07 °

AZIMUTH: 161.27 e AZIMUTH: 163.77 ° AZIMUTH: 166.53 ° AZIMUTH: 169.64 °

DAY 256

SUN ELE\

AZIMUTh

DAY 258 DAY 259 DAY 259 DAY 260

SUN ELEVATION." 66.91 ° SUN ELEVATION: 69.50 ° SUN ELEVATION." 70.56 ° SUN ELEVATION: 69.84 °

AZIMUTH: 209.76 ° AZIMUTH: 224.65 ° AZIMUTH: 242.27 ° AZIMUTH: 260.18 °

DAY 260

SUN ELE\

AZIMUTh

/

OAY 263 DAy 263 DAY 264 DAY 264

SUN ELEVATION: 44.59 ° SUN ELEVATION.- 39.17 ° SUN ELEVATION: 33.65 ° SUN ELEVATION: 28.05 °

AZIMUTH: 3J4.06 ° AZIMUTH: 42.23 ° AZIMUTH: 39.05 ° AZIMUTH: 36.25 °

Fig. VIII-11. Shadow progression studies of footpad 2 used to determine the time of lunar day that the magnet assembly would be in full sun-

light. These studies were conducted in the Surveyor Experiment Test Laboratory. The full-size spacecraft was used. The magnet assembly was

in full lighting for only about 1.5 hr of the entire lunar day 114 terrestrial daysl.

DAY 265

SUN ELE\

AZIMUTh





/ATION: 43.52 °

I: 173.24 °

DAY 256

SUN ELEVATION: 48.85 °

AZIMUTH: 177.53 °

DAY 257

SUN ELEVATION: 53.98 °

AZIMUTH: 182.80 °

DAY 257

SUN ELEVATION: 58.82 °

AZIMUTH: 189.50 °

DAY 258

SUN ELEVATION: 63.22"

AZIMUTH: 198.23"

/ATION: 67.51 °

I: 275.71 °

DAY 261

SUN ELEVATION: 64.00 °

AZIMUTH: 287.87 o

DAY 261

SUN ELEVATION: 59.73 °

AZIMUTH: 287.87 o

DAY 262

SUN ELEVATION: 54.96 °

AZIMUTH: 304.10 °

DAY 262

SUN ELEVATION: 49.88 °

AZIMUTH: 309.61 °

/ATION: 22.42 °

I: 33.72 °

DAY 265

SUN ELEVATION: 16.74 °

AZIMUTH: 31.37 °

DAY PREDICTION UNCERTAIN

SUN ELEVATION: 9.31 °

AZIMUTH: 31.37 °

DAY PREDICTION UNCERTAIN

SUN ELEVATION: 9.00 °

AZIMUTH: 31.37 °

DAY PREDICTION UNCERTAIN

SUN ELEVATION: 8.34 °

AZIMUTH: 31.37 °
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Fig. VII1-12. Sequence of magnet assembly through

the first lunar day. (a) Before vernier firlng (Day 255,

00:33:33). (b) After vernier firing (Day 258, 03:48:56).

(c) Sun on top of magnet; note clumping on poles (Day

261, 06:54:02). (d) Sun on left half of magnet; note pro-

jections of material on magnet and dimple on lower left --_

(Day 262, 05:08:04). (e) Approaching sunset; note lower

tip of magnet in sunlight (Day 266, 05:54:32). if) Sunset

on magnet assembly; note patches of (blue) paint on

north magnetic pole edge, and exposed area down the

center (Day 266, 09:54:20).
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D. Laboratory Studies

Various studies were conducted in the laboratory to
ensure better data retrieval as well as more accurate inter-

pretation of the results of the magnet assembly on a landed

spacecraft.

1. Shadow Progression Studies

Shadow progression studies were conducted with a full-

sized spacecraft as well as with a small model; detailed
studies were also conducted of footpad 2 in order to deter-

mine the periods of optimum lighting (see Fig. VIII-11).
The retrieval of the final sunset picture of the magnet

assembly was a direct result of these studies.

2. Impact Tests in Rock Types

Impact studies in the earth's atmosphere were conducted

with a footpad and magnet assembly similar to the one

flown on Surveyor V. Powders of various rock types were
used, ranging from acidic (high silica content) rhyolite to
ultrabasic (low silica content) peridotite (see Table

VIII-2); serpentine (a hydrated basic rock), was also
used. Two powder sizes were employed: 37-50_ and

50-150_. The footpad with the magnet assembly was held

stationary and the powder samples impacted against the
side of the footpad. Other series of tests using mechanical

impact or vertical plunging of the footpad into the sample
showed no discrepancies in the results.

In the rock-type sequence (Table VIII-2 and Fig.
VIII-13), it may be noted that only impact in basalt

Table VIII-2. Average composition of rock types used
in laboratory studies of magnet assembly impact

in rock powders (from Smith, Physical
Chemistry, pp. 372-373, 1963)

Rhyolite, Dacite, Basalt, Peridotlte,
Composition wt % wt % wt % wt %

SiO2

AI:O3

Na20

K:O

CaO

MgO

Fe20_

FeO

TiO:

P._Oa

MnO

H20

72.80

13.49

3.38

4.46

1.20

0.38

1.45

0.88

0.33

0.08

0.08

1.47

65.68

16.25

3.97

2.67

3.46

1.41

2.38

1.90

0.57

0.15

0.06

1.50

49.06

15.70

3.11

1.52

8.95

6.17

5.38

6.37

1.36

0.45

0.031

1.62

45.07

5.75

1.14

0.57

7.48

22.88

3.43

4.53

0.64

0.15

0.26

3.10

powders resulted in much adherence of material to the

magnetic bar on the left. Peridotite showed considerably
less, and the more acidic rocks showed almost nothing on

the magnet. Because the material adhering to the magnet
in these tests is essentially magnetite, the laboratory results

reflect the magnetic content of the rock types in question.

3. Impact l"estsin Basalt With Additions of Iron

Impact studies were conducted using powdered Little
Lake basalt and Pisgah scoriaceous basalt. To the 37-50/_
Little Lake basalt, 1 to 20_ volumetric additions of pure

powdered iron were made. A 100_ iron sample was also
used, as well as coarse iron shavings to determine the

amount of material that the 500-gauss magnet was capable
of attracting (see Figs. VIII-14 to VIII-16). A definite dif-

ference in the appearance of the magnet can be observed
with each 1_; increase in iron content.

4. Vacuum Studies

Impact and jet exhaust effects were studied in a vacuum
chamber with a 10-"-torr vacuum. The impact tests in

basalt with iron additions were repeated (Fig. VIII-17);
an attitude control jet was fired into the sample at close

range to obtain an upper limit for the possible addition of
material on the magnet through the firing of the vernier

engines. No appreciable amount of material adhered to
the magnet with the jet tests (see Fig. VIII-18). In the
vacuum impact tests, cohesion of a fine, even coating of
material was observed over the side of the bracket as well

as on the control bar. When the chamber was opened, very

little air pressure was necessary to remove this coating.
All the vacuum studies were photographed through the

chamber porthole while the assembly was still in vacuum.
Samples were baked at 300°F for 12 hr prior to the vacuum
impact studies.

5. Landing Simulation Studies

Six simulations of the landing mode were conducted in

a trough of 37-50/_ Little Lake basalt. A velocity of about
i m sec -1, a distance of about 1 m, and a penetration depth
of about 10 cm were used as parameters. All landings

resulted in a similar appearance of the magnet (see Fig.
VIII-19). A fine film of material adhered to the bracket

and control bar, probably caused by moisture in the
sample; this adherence afforded a comparison with

vacuum cohesion on the lunar assembly. The packing in
the sides of the simulated landing trough, as well as the
resulting appearance of the test magnet, are similar to the

lunar counterparts as observed by the Surveyor V camera.
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37- 50/J.
RHYOLITE

37-50 p.
DAC I TE

50-15Op.

50-15Op.

:57-50p. 50-150_
BASALT

37- 50/J. 50-150_
PERIDOTITE

Fig. VII1-13. Results of impact in atmosphere in rock types ranging from acidic (high silica content) rhyolite to

basic (low silica content) peridotite. Two powder sizes were used: 37-50/_ and 50-150F. Note appearance of basalt

powders.
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BASALT SCOR IA 100% SCORIA

+4% Fe

100% BASALT

" +5% Fe

i. COARSE CRUSHED
+15% Fe !_ Fe FILINGS SCORIA

_j ,_

I I III I ' IlI II I I I1 iii .... I IIII ' III I I

Fig. VII1-14. Materials used in powdered iron addition studies. The additions of iron are powdered iron by volume

percent to powdered basalt.

166 JPL TECHNICAL REPORT 32-1246



SCORIACEOUS BASALT BASALT + 2% Fe

BASALT BASALT + 5% Fe

BASALT +l%Fe BASALT + 4% Fe

Fig. VII1-15. Impact in atmosphere into powdered basalt with additions of powdered iron by volume percent°
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BASALT + I0% Fe BASALT + 20% Fe

BASALT +15% Fe I00% Fe

Fig. VII1-16. Impact in atmosphere into powdered basalt with additions of powdered iron by volume percent. Lower

right shows 100% powdered iron to indicate the amount of iron this magnet is capable of holding.
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100% BASALT BASALT + 2% Fe

BASALT + 1% Fe BASALT + 5% Fe

Fig° VII1-17. Impact in lO-%torr vacuum into powdered basalt and basalt with volumetric additions of powdered iron

as indicated. Note vacuum cohesion on bracket and control bar. Since the footpad is viewed upside down, the mago

net is now on the right.
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Fig. VII1-18. Exhaust tests in 10-6-torr vacuum. An atti-

tude control jet was used at close range to simulate pos-

sible forces from the vernier exhaust on the magnet

assembly on the moon. (a) Prior to firing. (b) After firing

into powdered basalt with 1% by volume addition of

powdered iron. No material is seen to collect on the

magnet. (c| After firing into powdered basalt with 4%

by volume addition of powdered iron. Note small amount

of material adhering to the edges of the magnet. It is

concluded that very little, if any, material was added by

the vernier engine firing on the moon. These pictures

were taken through the viewing portal in the vacuum
chamber.
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Fig. VII1-19. (a) Laboratory simulation of footpad 2 landing mode in 37-50/_ Little Lake basalt. Velocity, depth of

penetration, and distance were simulated. (b} Picture taken by Surveyor V of the side of trench dug by footpad 2°

Note similarity to Fig. VIIl-18a and VII1-18c {Day 258, 04:02:17). (c) CIoseup of footpad and magnet assembly used

in laboratory simulation studies of landing (Fig. VIIl-18a). Six such landings were performed; all results were similar°

Note material on control bar on the right, material in the honeycomb and clumped on the magnet, covering the

attachment screws. The increased humidity in the laboratory may have caused results similar to the apparent vacuum

cohesion on the moon.
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Fig. VIII-20. Comparison Of lunar magnet results with laboratory material studies most closely resembling the mag-

net. Top row, left to right, are lunar pictures of the Surveyor V magnet {Day 266, 09:54:20; Day 266, 09:44:54; and

Day 262, 05:08:04)° Bottom row, left to right, are scoriaceous Pisgah basalt, Little Lake basalt 37-50_, Little Lake

basalt with 1% by volume addition of powdered iron.



Eo Discussion

Because the success of the Magnet Experiment de-

pended on a known solid impact with the lunar surface
material, a better landing could not have been executed.

From inspection of pictures of the material covering the
footpad, and the trench morphology, the requirement for

lunar surface material impact was met.

In order to impose a control on the interpretation of

the cause of the adherence of material to the magnetic
bar (magnetic attraction or vacuum cohesion), the non-

magnetic Inconel X-750 bar was included. Prior to firing
of the vernier engines, material was observed on the

bracket and control bar, probably, caused by vacuum
cohesion; the magnet was dark. After firing the vernier
engines, the bracket and control bar were perfectly clean,

and the paint in the zero-gauss area of the magnet was
visible. Areas of lower magnetic strength along the pole

faces also showed patches of blue paint (compare
Fig. VIII-12 with Fig. VIII-2). Therefore, the control for

interpretation of the cause of adherence was accom-
plished; the material remaining on the magnet must be

material with high-magnetic permeability, i.e., iron, mag-
netite (Fe:_O4), or Ni-Fe meteoritic fragments.

Interpretation of the lunar results is dependent upon
visual similarity of the lunar pictures of the magnet with
pictures of laboratory studies in various rock powders
(with and without the addition of iron), different powder

sizes, and with landing simulation studies. The results

of such a comparison show some interesting similarities

(Fig. VlII-2O).

In comparison with the rock-type impact sequence, the
only terrestrial results resembling the lunar pictures are

those in fine basalt powder, 37-50_. In a sequence of
different-sized basalt powders, > 50_ and < 37/z caused

much less material to adhere to the magnet (Fig. VIII-21).

By comparison of the lunar pictures with the iron addi-
tion sequence, the laboratory impact in 1_; by volume

addition of powdered iron appears to be in excess of the
lunar results in terms of quantity of material adhering to

the magnetic bar.

Fig. Vlll-210 Studies of impact in atmosphere, using

<37/_, 37-50_, and 50-150_ Little Lake basalt with no
additions of iron, showed less material adhering to the

magnet bar when <37/_ and >50/_ basalt were used.

i toJ

(b)

!i_i i

Icl
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The jet exhaust studies seem to preclude the possibility

that any appreciable amount of material was added by
the vernier firing. Howe_zer, material over zero- or low-
magnetic-field areas was removed.

Laboratory measurements made under vacuum condi-
tions showed apparent vacuum cohesion of material on
the bracket and control bar similar to that seen in the

lunar magnet prior to vernier engine firing. Other vacuum
results indicated that the studies in atmosphere were

similar in terms of the amount of material adhering to
the magnetic bar. Therefore, it is concluded that studies

in atmosphere give valid data comparisons for interpre-
tation for the lunar results.

From landing simulation studies, the appearance of the
terrestrial magnet assembly was quite similar to that on
the moon after the former had "lunar landed" in powdered
basalt.

F. Problems

In interpreting these results, several considerations war-
rant further study. An elemental analysis of the Little
Lake basalt is shown in Table VIII-3. Most of the iron is

in the form of magnetite, amounting to 10 to 12_ by
weight of the rock. The magnetite particles themselves

Table VIII-3. Elemental analyses of the Little Lake

basalt and Pisgah scoriaceous basalt used
in laboratory studies

Element Little Lake basalt, wt % Pisgah scoriaceous
wt%

Silicon

Aluminum

Iron

Magnesium

Calcium

Titanium

Gallium

Manganese

Nickel

Vanadium

Copper

Sodium

Zirconium

Cobalt

Potassium

Strontium

Chromium

Tungsten

Barium

20

10.48

5.78

5.03

4.98

2.18

0.0055

0.058

0.0059

0.014

0.0032

2.6

0.018

0.0064

1.12

0.049

0.017

0.22

0

24

6.7

7.7

6.4

5.0

1.7

0

0.076

0.014

0.013

0.0033

1.9

0.016

0.0098

0.56

0.026

0.055

0

Trace

are 10 to 15_ in size. Therefore, in the 37-50/_ powder,

the size of the magnetite particles is being approached.
This could be a very important point. The relationship
between size of iron particle to rock powder needs fur-

ther investigation in terms of magnetic attraction. This
raises the question of whether iron vapor-deposited on

silicate particles (following meteoritic impact) or iron
coatings deposited by sputtering would be magnetic. A
thickness of a few angstroms of iron on a silicate grain

50_ in size would, from preliminary investigations, not
be attracted to a 500-gauss magnet. 1

A finer breakdown in size range of powders should also

be used: the 37-50tz is just beginning to approach the mag-
netite particle level and causes the greatest amount of
material to adhere. A considerable difference is seen in

the results with impact < 37_, 37-50_, and 50-150_. Both

the <37_ and >50_t powders showed much less adher-

ence. Size-range increments of 10_ may yield fruitful re-
sults in attempting to determine the size of lunar particles

from visual simulations of the magnet results. The alpha-
scattering data present a control on constituents.

G. Conclusions

The following conclusions may be made on the basis
of the Surveyor V pictures of the magnet assembly:

(1) Iron is present on the lunar surface at the landing
site in the form of magnetite, pure iron, meteoritic
Ni-Fe fragments, or some combinations of these
forms of iron.

(2) As observed from laboratory studies, an upper limit

for the addition of iron to a naturally occurring rock
may be represented by 1_ by volume addition of
powdered iron.

(3) Lunar .magnet results are not in disagreement with

the laboratory results qf impact in a 37--50_ pow-
dered basalt with no addition of iron.

(4) The Surveyor V magnet results indicate consider-

ably less magnetic material than would be expected
from entirely meteoritic pulverization and cratering
of the lunar surface.

These results provide support to the Alpha-Scattering

Experiment, the results from which indicate that the ob-
served lunar material has a composition similar to terres-

trial basalt, by apparent agreement with the amount of
magnetite to be expected in a basaltic rock.

1R. Fraser, private communication.
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Since the mare surface morphology unit is a widespread

homogeneous unit on the lunar surface, conclusions per-

taining to this area may be extrapolated in a wider con-
text to the other lunar maria.
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IX. Lunar Theory and Processes

D. E. Gault, J. B. Adams, R. J. Collins, J. Green, G. P. Kuiper, H. Masursky,

J. A. O'Keefe, R. A. Phinney, and E. M Shoemaker

Ao Discussion of Chemical Analysis

The chemical analysis (see Section VII) of the lunar

surface at the Surveyor V landing site in southwestern

Mare Tranquillitatis has opened a new era in the study
of the origin and history of the moon and other planetary
bodies. From preliminary results of the Alpha-Scattering

Experiment, the elemental abundances of the major
constituents are sufficiently well defined to warrant some

discussion of their significance and some tentative con-
clusions. It is recognized that this first analysis for a single

spot ( 10 cm in diameter) on the lunar surface may not be
representative of even a small part of the mare surface.

Meteoric impact or, perhaps, explosive volcanism, or both,
are mechanisms for distributing and mixing lunar mate-

rial so that a heterogeneous mixture of many components

could have been displayed for analysis under the alpha-
scattering instrument. It seems unlikely that sufficient
foreign material could be mixed ',_i,h the indigenous

mare material to mask the composition of the parent

components totally, but it must, nevertheless, be con-
sidered a possibility. The modifying effects of prolonged
exposure to solar radiation must also be considered

because the alpha-scattering technique permits a sam-

piing of only micron-deep layers of the exposed material.
However, some subsurface material shielded from direct

solar radiation was ejected by the impact of the footpads
against the surface into the region where the alpha-

scattering instrument was finally deployed (see Section
III). Subiect to such limitations and qualifications, a pre-

liminary interpretation is presented of the results from
this experiment.

The chemical analysis by Turkevich, et al. (see Section

VII) is compared in Table IX-1 with six common rock
types, spanning the range in silica content from ultra-

marie to silicic composition. Although the composition in
any given classification of rocks can vary over a fairly

broad range, the magnesium and aluminum abundances
in the lunar sample are inconsistent with, and cannot be

related to, those of ultramafic rocks such as peridotite
and chondritic meteorite. Similarly, the silicic materials

represented by the averages for granite and tektite are
characterized by silicon and heavy elemental abundances
that are also inconsistent with the alpha-scattering data.

The analysis points to a basaltic composition, a conclusion
that is consistent with the indications from the Magnet

Experiment (see Section VIII).
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Table IX-1. Elemental abundances for some common rock types, compared with preliminary

chemical analysis of the moon at the landing site

Atomic percent

Plateau Granite Moon Indo-Malayan Basaltic L-type
Element Peridotite basalt (mare) tektite achondrite chondrite

(Ref. IX-l) (Ref. IX-l)
(Ref. IX-l) (see %ction VII) (Ref. IX-2) (Ref. IX-2) (Ref. IX-2)

Hydrogen

Carbon

Oxygen

Sodium

Magnesium

Aluminum

Silicon

Phosphorous to

copper

(Iron, cobalt,

nickel)

2.5

57.5

0.4

18.7

1.9

15.0

4.1

2.4

4.2

59.0

1.8

3.6

5.8

17.1

8.6

3.9

1.9

62.1

2.3

0.5

5.9

23.3

3.5

0.9

<3
58 ±5

<2
3±3

6.5 ±2

18.5 "4-3

13 "+3

_3

0.4

63.7

1.0

1.1

5.4

25.1

3.4

1.5

0.9

59.6

0.6

5.5

5.1

18.2

10.1

5.3

0.7

54.6

0.8

14.4

1.2

15.5

12.7

10.0

Important genetic implications arise from a basaltic

composition. Basalt is derived by chemical fractionation
of an ultramafic rock. Thus, it seems highly probable that
differentiation has occurred in the moon as a result of

partial or fractional melting of lunar material.

The heat sources necessary to melt the lunar material
probably originated within the moon rather than from an

external source. Internal sources include decay of radio-
active elements, gravitational compression, and dissipation

of kinetic energy by mechanical processes. The possibility
that the analyzed material is the fractional product from
a large puddle of melt produced by a monstrous collision
that formed the mare basin is inconsistent with the obser-

vations that the filling of the mare basins could not have

been contemporary with their formation (Refs. IX-3 and
IX-4).

Based on the ratio of silicon to sodium in relation to

oxygen content (Ref. IX-5), the material analyzed by the
alpha-scattering instrument approximates the chemistry
of some of the most common terrestrial basalts. Even

though the analysis of the data has not been refined to
the point where the material can be categorized into a

specific subgroup of basalt, the general trend is consistent
with a widely accepted hypothesis that extensive volcanic

flows have been responsible for flooding and filling of
the mare basins. Extensive basalt flows are widespread on

earth (Ref. IX-6). By far the greatest proportion is found
as ocean-floor basalt, being derived from partial fusion
of the underlying ultramafic mantle. The Columbia Pla-

teau and Deccan Traps are the best known of this genre
on continents.

It is significant and gratifying that the chemical com-
position of the lunar material appears to be most like that
of a common terrestrial rock, and this material is not

composed of an unusual mixture of elements. Apparently,
the geochemical processes on the earth do not differ

greatly from their lunar counterparts despite environ-
mental differences between the two bodies. Therefore,

for the first time, we have some evidence for the validity

of extrapolating terrestrial geochemical and geologic ex-

perience to the interpretation of the moon and of lunar

processes.

If the lunar sample analyzed by the alpha-scattering
instrument is fairly typical of the compositional type of

material at the Surveyor V landing site, and this seems"
a reasonable assumption, then it is to be inferred that

the observed composition is probably also appropriate
to material in other maria because of the geologic simi-

larities among the mare units. There is no reason to
assume, however, that basaltic materials with different

compositions will not be found in all maria; indeed, dif-
ferent compositions are to be expected as the natural

consequences of normal fractionation processes. Although
knowledge of such differences would be of great interest,
the determination of the composition in the contrasting

highland provinces now becomes of paramount impor-
tance for clarifying the extent and degree of magmatic
differentiation that has occurred in the moon.
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IX-1.

IX-2.

IX-Z.

IX-4.

IX-5.

IX-6.
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Appendix A

Study of Contamination of Surveyor V Landing Site
by Main Retro Exhaust

A. LoTurkevich, E. J. Franzgrote, and J. Ho Patterson

Because of the nonstandard nature of the Surveyor V

landing operation, the main retro rocket burned to within
1.6 km of the lunar surface. (The standard end-of-burning

altitude is about 12 km). Since solid particles of aluminum
oxide are contained in the retro exhaust, consideration

has been given to the possibility that the alpha-scattering
analysis has been affected by the retro operation.

A calculation of the mass per unit area of aluminum

oxide deposited at the landing site has been made, based
on:

(1) Trajectory of the spacecraft.

(2) Pointing angle of the retro motor relative to the

landing site.

(3) Cone angle of the exhaust products.

(4) Mass of aluminum oxide exhausted as a function of

burning time.

The following sketch shows the attitude of the space-
craft and its location relative to the landing site (LS) near

the end of retro burning:

%

LS

Because of the large off-vertical angle of approach, the
retro operation during the final few seconds of burning

did not deposit aluminum oxide at the landing site. This

served to materially reduce the contamination relative to

that expected for a vertical landing (at comparable dis-
tances from the surface).

The geometrical relationships used in the calculation
are shown in the following sketch:

_R

A

where

A = altitude of spacecraft

R = range to lunar surface along the trajectory

D = distance from the retro aiming point to the land-

ing site

The values A, R, and D as a function of time are known

from Surveyor V trajectory data:

lime (after vernier ignition), sec A, km R, km D, km

0 46 64 1.0
10 28 40 1.3

20 15 21 1.6
30 5.2 7.6 1.7
40 1.6 2.3 1.7
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Since the retro aiming direction and the line of the

trajectory were within a degree of each other, they are
assumed to be the same for these calculations. The ratio

of R to A remained fairly constant throughout retro oper-
ation, and the angle a is assumed to be constant at 43 deg.

Beta is the half-angle of the retro exhaust cone. The

sketch illustrates the special case where the exhaust cone
iust intersects the landing site at a distance, R- y. By

using a value of t, which is appropriate for the main retro
motor, R - y may be found to satisfy this special condi-
tion. Then, at all greater ranges, the landing site will be

included in the exhaust cone. (The particles can be as-
sumed to travel in straight lines.)

Two values of fl were chosen. For case I, the angle

was defined by the geometry of the rocket nozzle; 1005

of the solid particles are contained within that angle
(cot fl = 4.0). For case II, since studies of the distribution

of solid particles in rocket exhausts indicate that the
particles are more concentrated along the central axis

of the nozzle, an angle half that of case I was assumed
(cot fl = 8.0).

Using these two cone angles, the values of R - y for
the critical condition were found to be 4.3 km for case I

and 9.1 km for case II. At various values of R -- y greater
than these critical values, the area of the circular cross-

section of the exhaust cone (Where this cross-section in-
cludes the landing site) may be calculated. The mass of
aluminum oxide per unit area can then be calculated for

a given interval of burning, assuming an even distribution
of particles across the cross-section of the cone. The mass
flow-rate of aluminum oxide from the retro engine can be

taken to be constant at 4.3 )< 103 g/sec for the period 1 to
40 sec after vernier ignition.

Calculations of the mass of aluminum oxide per unit
area were made for both cases, integrating stepwise for
several time intervals back to the start of the retro rocket

firing. The total amount of contamination at the landing
site was found to be 3.0 )< 10 -7 g/cm 2 for case I and

3.2 X 10-7 g/cm 2for case II.

The results are fairly insensitive to changes in the ex-
haust cone angle for the following reason. At narrow

angles, the exhaust cone includes the landing site only
at the greater ranges; however, the solid particles are
more concentrated because of the narrow angle.

The average particle size (on a mass basis) for a motor
of the Surveyor characteristics is about 3.5it. A sample

of material with a density of 2.0 g/cm 2 and 3.5_t thick has
a mass per unit area of 7 >( 10 -4 g/cm 2. The percentage

of area covered by the particles deposited by Surveyor V,
is, therefore

3 )< 10 -7 g/cm 2
7 × _ (100) = 0.04_ aluminum oxide

or, approximately 0.02g aluminum.

Even if the contamination level were an order of mag-

nitude higher than that estimated, it would be negligible
in comparison with the 6.5 ___2g aluminum found in
the preliminary analysis of the lunar sample. Moreover,

because of the high velocity of impingement (varying be-
tween one and two times the lunar escape velocity), it is
unlikely that the aluminum-oxide particles come to rest

on the very surface of the moon at the point of impact.
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Appendix B

Surveyor Science Teams

Analysis of the scientific data, for the Surveyor V mission, was conducted by the

Surveyor Scientific Evaluation Advisory Team, Investigator Teams, and Working

Groups. Membership for Surveyor V was:

A. Surveyor Scientific Evaluation Advisory Team

L. D. Jaffe, Chairman

S° A. Batterson

W. E. Brown, Jr.

E. M. Christensen

S. E. Dwomik

D. E. Gault

J. W. Lucas

R. H° Norton

R. F. Scott

E. M. Shoemaker

G. H. Sutton

A. L. Turkevich

Jet Propulsion Laboratory

Langley Research Center

Jet Propulsion Laboratory

Jet Propulsion Laboratory

NASA Headquarters

Ames Research Center

Jet Propulsion Laboratory

Jet Propulsion Laboratory

California Institute of

Technology

U. S. Geological Survey

University of Hawaii

University of Chicago

B° Investigator Teams

1. Television

E° M. Shoemaker, Principal Investigator

R. A. Altenhofen

R. Mo Batson

H. E. Holt

G. P. Kuiper

E. C. Morris

J. ]. Rennilson
E. A. Whitaker

2. Alpha-Scattering

A° L. Turkevich, Principal Investigator

E. J. Franzgrote

J. H. Patterson

C. Working Groups

1. Lunar Surface Thermal Properties

J. W. Lucas, Chairman

U° SoGeological Survey

U. S. Geological Survey

U. S. Geological Survey

U. S. Geological Survey

University of Arizona

U. S. Geological Survey

Jet Propulsion Laboratory

University of Arizona

University of Chicago

Jet Propulsion Laboratory

Argonne National Laboratory

Jet Propulsion Laboratory
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2.

3.

4.

J. E. Conel

R. R. Garipay
D. Greenshield

W. A. Hagemeyer

H. C. Ingrao

B. P. Jones

J. M. Saari

Lunar Surface Electromagnetic Properties

W. E. Brown, Jr., Chairman

R. A. Dibos

G. B. Gibson

D. O. Muhleman

W. H. Peake

V. J. Poehls

J. Negus de Wys

Lunar Surface Mechanical Properties

E. M. Christensen, Chairman

S. A. Batterson

H. E. Benson

R. Choate

L. D. Jaffe

R. H. Jones

H.Y. Ko

F. N. Sehmidt

R. F. Scott

R. L. Spencer

F. B. Sperling
G. H. Sutton

Astronomy

R. H. Norton, Chairman

J. E. Gunn

W. C. Livingston

G. A. Newkirk

H. Zirin

5. Lunar Theory and Processes

D. E. Gault, Chairman

]. B. Adams

Jet Propulsion Laboratory

Hughes Aircraft Company

Manned Spacecraft Center

Jet Propulsion Laboratory

Harvard College Observatory

Marshall Space Flight Center

The Boeing Company

Jet Propulsion Laboratory

Hughes Aircraft Company

Manned Spacecraft Center

California Institute of

Technology

Ohio State University

Ryan Aeronautical Company

Jet Propulsion Laboratory

Jet Propulsion Laboratory

Langley Research Center

Manned Spacecraft Center

Jet Propulsion Laboratory

Jet Propulsion Laboratory

Hughes Aircraft Company

University of Colorado

Bellcomm, Inc.

California Institute of

Technology

Jet Propulsion Laboratory

Jet Propulsion Laboratory

University of Hawaii

Jet Propulsion Laboratory

Jet Propulsion Laboratory

Kitt Peak National

Observatory

High Altitude Observatory

Mt. Wilson and

Palomar Observatories

Ames Research Center

Jet Propulsion Laboratory

184 JPL TECHNICAL REPORT 32-1246



R. J. Collins

T. Gold

J. Green

G. P. Kuiper

H. Masursky

J. A. O'Keefe

R. A. Phinney

E. M. Shoemaker

H. E. Urey

University of Minnesota

Cornell University

McDonnell-Douglas Corp.

University of Arizona

U oS° Geological Survey

Goddard Space Flight Center

Princeton University

U. S. Geological Survey

University of California, San Diego
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